1   Ghoneim, R., G. Mete and A. Hobley (2022). Steel and cement can drive the decade of action on climate change: This is how. United Nations Industrial Development Organization (UNIDO), ‘Industrial Analytics Platform’. Available at: https://iap.unido.org/articles/steel-and-cement-can-drive-decade-action-climate-change-how [accessed May 2023].
2   Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.
3   Kim, J., et al. (2022). Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research & Social Science, 89, 102565.
4   Material Economics (2019). Industrial transformation 2050: Pathways to net-zero emissions from EU heavy industry (executive summary), Net Zero 2050 (Executive summary), Cambridge: University of Cambridge Institute for Sustainability Leadership (CISL). Available at: https://europeanclimate.org/wp-content/uploads/2019/11/25-04-2019-industrial-transformation-2050-executive-summary.pdf.
5   Brogan, C. (2022). ‘Greening’ cement and steel: 9 ways these industries can reach net zero. London: Imperial College. Available at: www.imperial.ac.uk/news/235134/greening-cement-steel-ways-these-industries [accessed May 2023].
6   Bataille, C., S. Stiebert and F.G.N. Li (2021). Global facility level net-zero steel pathways. Paris: The Institute for Sustainable Development and International Relations (IDDRI). Available at: http://netzerosteel.org/wp-content/uploads/pdf/net_zero_steel_report.pdf.
7   IPCC (2022). Climate change 2022: Mitigation of climate change – Full report, Working Group III contribution to IPCC sixth assessment report. Cambridge, UK: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/.
8   Arens, M., M. Åhman and V. Vogl (2021). Which countries are prepared to green their coal-based steel industry with electricity? – Reviewing climate and energy policy as well as the implementation of renewable electricity. Renewable and Sustainable Energy Reviews, 143, 110938.
9   Vogl, V., M. Åhman and L.J. Nilsson (2018). Assessment of hydrogen direct reduction for fossil-free steelmaking. Journal of Cleaner Production, 203, 736–45.
10   Arens, M., M. Åhman, and V. Vogl (2021). Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity. Renewable and Sustainable Energy Reviews, 143, 110938.
11   Zero Waste Europe (2020). Why co-incineration of waste is not taxonomy-compliant and should be excluded. Brussels: Zero Waste Europe. Available at: https://zerowasteeurope.eu/library/why-co-incineration-of-waste-is-not-taxonomy-compliant-and-should-be-excluded/.
12   VDZ (2021). Environmental data of the German cement industry. Düsseldorf: Verein Deutscher Zementwerke (VDZ). Available at: https://www.vdz-online.de/fileadmin/wissensportal/publikationen/umweltschutz/Umweltdaten/VDZUmweltdaten_Environmental_Data_2021.pdf.
13   Hites, B. (2020). The growth of EAF steelmaking. Recycling Today. Available at: https://www.recyclingtoday.com/article/the-growth-of-eaf-steelmaking/ [accessed May 2023].
14   Wang, P., et al. (2021). Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nature Communications, 12(1), 2066.
15   Marmier, A. (2023). Decarbonisation options for the cement industry. Luxembourg: Publications Office of the European Union. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC131246.
16   Hann, S. (2022). Is net zero enough for the material production sector? Bristol: Eunomia Research & Consulting Ltd. Available at: https://zerowasteeurope.eu/wp-content/uploads/2022/11/Is-Net-Zero-Enough-for-the-Materials-Sector-Report-1.pdf.
17   Global CCS Institute (2022). 2022 Status report: Appendices. Available at: https://status22.globalccsinstitute.com/2022-status-report/appendices/ [accessed May 2023].
18   Fennell, P., et al. (2022). Cement and steel – Nine steps to net zero. Nature, 603, 574–577. Available at: https://www.nature.com/articles/d41586-022-00758-4 [accessed May 2023].
19   Freitag, C., et al. (2021). The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns, 2(9), 100340.
20   Marmier, A. (2023). Decarbonisation options for the cement industry. Luxembourg. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC131246.
21   Probst, B., et al. (2021). Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 6, 1077–86.
22   IP Australia (2022). Low emission steel, aluminium and iron ore. Available at: https://app.powerbi.com/view?r=eyJrIjoiNGMyYjE0NjItYzcxNy00NzViLWExYjEtZGE0YjZkYzIxOGUxIiwidCI6IjljMGNlZDQ5LTRlMzYtNGY4MS1iOGQ3LTEwYzRhMGNiZmYyZCJ9 [accessed May 2023].
23   Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.
24   ECOS (2023). A performance-based standard for common cements. ECOS Brief, Environmental Coalition on Standards (ECOS). Available at: https://ecostandard.org/publications/ecos-brief-a-performance-based-standard-for-commoncements/.
25   IEA (2019). Global patent applications for climate change mitigation technologies – a key measure of innovation – are trending down. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/commentaries/globalpatent-applications-for-climate-change-mitigation-technologies-a-key-measure-of-innovation-are-trending-down.26 IP Australia (2022). Carbon capture and storage. Available at: https://app.powerbi.com/view?r=eyJrIjoiYjE1MDI2Y2ItY2Q0NC00NjUwLWE1NmYtODA4Njg0MTkzMjA4IiwidCI6IjljMGNlZDQ5LTRlMzYtNGY4MS1iOGQ3LTEwYzRhMGNiZmYyZCJ9 [accessed May 2023].
27   Xie, H., et al. (2022). Progress in hydrogen fuel cell technology development and deployment in China. Geneva: WIPO, Global Challenges Division. Available at: https://dx.doi.org/10.34667/tind.44764.
28   IP Australia (2021). The power of hydrogen: Patent analytics on hydrogen technologies. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/hydrogen-technology-patent-analytics.
29   IP Australia (2021). The power of hydrogen: Patent analytics on hydrogen technologies. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/hydrogen-technology-patent-analytics.
30   European Patent Office (2020). Fourth industrial revolution. Available at: https://www.epo.org/news-events/in-focus/ict/fourth-industrial-revolution.html [accessed May 2023].
31   UNCTAD (2022). What is ‘Industry 4.0’ and what will it mean for developing countries? United Nations Conference on Trade and Development (UNCTAD). Available at: https://unctad.org/news/blog-what-industry-40-and-what-will-itmean-developing-countries [accessed May 2023].
32   IP Australia (2018). The blockchain innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/02/59/the-blockchain-innovation-a-patent-analytics-report.
33   IP Australia (2019). Machine learning innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/03/31/machine-learning-innovation-a-patent-analytics-report.
34   IP Australia (2018). The blockchain innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/02/59/the-blockchain-innovation-a-patent-analytics-report.
35   IP Australia (2019). Machine learning innovation: A patent analytics report. Available at: https://www.ipaustralia.gov.au/tools-and-research/professional-resources/data-research-and-reports/publications-and-reports/2022/09/30/03/31/machine-learning-innovation-a-patent-analytics-report.
36   Probst, B., et al. (2021). Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 6, 1077-86.
37   CPI (2022). Financing steel decarbonization, Instrument Analysis. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/wp-content/uploads/2022/10/FSD-report.pdf.
38   Wood Mackenzie (2022). Pedal to the metal: Iron and steel’s US$1.4 trillion shot at decarbonisation. Horizons. Available at: https://www.woodmac.com/horizons/pedal-to-the-metal-iron-and-steels-one-point-four-trillion-usdshot-at-decarbonisation/ [accessed May 2023].
39   Maltais, A., et al. (2022). The role of international finance institutions in the transition to low-carbon steel production. Leadership Group for Industry Transition (LeadIT). Available at: https://www.sei.org/wp-content/uploads/2022/11/report-2209a-ifis-lhv2.pdf.
40   McKinsey (2020). Laying the foundation for zero-carbon cement, Chemicals Practice. McKinsey & Company. Available at: https://www.naiopmd.org/wp-content/uploads/2022/08/Cement-McKinsey-laying-the-foundation-for-zerocarbon-cement-v3.pdf.
41   Gardner, T. (2023). US announces $6 bln in grants to decarbonize heavy industry. Reuters. Available at: https://www.reuters.com/business/environment/us-announces-6-bln-grants-decarbonize-heavy-industry-2023-03-08/ [accessed May 2023].
42   UNEP FI (2023). Climate risks in the industrials sector, Sectoral Risk Briefings: Insights for Financial Institutions. UN Environment Programme Finance Initiative. Available at: https://www.unepfi.org/wordpress/wp-content/uploads/2023/04/Climate-Risks-in-the-Industrials-Sector.pdf.
43   Maltais, A., et al. (2022). The role of international finance institutions in the transition to low-carbon steel production. Leadership Group for Industry Transition (LeadIT). Available at: https://www.sei.org/wp-content/uploads/2022/11/report-2209a-ifis-lhv2.pdf.
44   Bataille, C., S. Stiebert, and F.G.N. Li (2021). Global facility level net-zero steel pathways. Paris: The Institute for Sustainable Development and International Relations (IDDRI). Available at: http://netzerosteel.org/wp-content/uploads/pdf/net_zero_steel_report.pdf.
45   Bataille, C., S. Stiebert, and F.G.N. Li (2021). Global facility level net-zero steel pathways. Paris: The Institute for Sustainable Development and International Relations (IDDRI). Available at: http://netzerosteel.org/wp-content/uploads/pdf/net_zero_steel_report.pdf.
46   OECD (2021). Latest developments in steelmaking capacity. Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd.org/industry/ind/latest-developments-in-steelmaking-capacity-2021.pdf.
47   CPI (2022). Financing steel decarbonization. Instrument Analysis, Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/wp-content/uploads/2022/10/FSD-report.pdf.
48   CPI (2022). Financing steel decarbonization. Instrument Analysis, Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/wp-content/uploads/2022/10/FSD-report.pdf.
49   DNV (2023). Green steel assurance. Det Norske Veritas (DNV). Available at: https://www.dnv.com/services/greensteel-assurance-232895 [accessed May 2023].
50   Net Zero Insights (2023). An overview of the green steel startups and initiatives. Available at: https://netzeroinsights.com/resources/market-insights/green-steel-startups-funding-landscape/ [accessed May 2023].
51   Maltais, A., et al. (2022). The role of international finance institutions in the transition to low-carbon steel production. Leadership Group for Industry Transition (LeadIT). Available at: https://www.sei.org/wp-content/uploads/2022/11/report-2209a-ifis-lhv2.pdf.
52   Chaudhary, A. (2022). India planning carbon credit market for energy, steel and cement. The Economic Times. Available at: https://economictimes.indiatimes.com/industry/renewables/india-planning-carbon-credit-market-forenergy-steel-and-cement/articleshow/93297031.cms?from=mdr [accessed May 2023].
53   UNEP FI (2023). Climate risks in the industrials sector. Sectoral Risk Briefings: Insights for Financial Institutions, UN Environment Programme Finance Initiative. Available at: https://www.unepfi.org/wordpress/wp-content/uploads/2023/04/Climate-Risks-in-the-Industrials-Sector.pdf.
54   OECD (2022). Assessing steel decarbonization progress: ready for the decade of delivery? Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd.org/industry/ind/assessing-steeldecarbonisation-progress.pdf.
55   GIZ (2021). Potential of Article 6 and other financing instruments to promote Green Hydrogen in the Steel, Cement and Mining Industries. Bonn, Germany: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Available at: https://www.carbon-mechanisms.de/fileadmin/media/dokumente/Publikationen/Bericht/Art.-6-Green-Hydrogen-Final-ENG.pdf.
56   Agora Energiewende (2023). Global steel transformation tracker. Available at: https://www.agora-energiewende.de/en/service/global-steel-transformation-tracker/ [accessed May 2023].
57   Kim, J., et al. (2022). Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research & Social Science, 89, 102565.
58   Blank, T.K. (2019). The disruptive potential of green steel, Insight brief. Rocky Mountain Institute (RMI). Available at: https://rmi.org/wp-content/uploads/2019/09/green-steel-insight-brief.pdf.
59   Westerholm, N. (2023). Unlocking the potential of local circular construction materials in urbanising Africa. United Nations One Planet Sustainable Buildings and Construction Programme. Available at: https://www.oneplanetnetwork.org/knowledge-centre/resources/unlocking-potential-local-circular-construction-materials-urbanising.
60   Guevara Opinska, L., et al. (2021). Moving towards zero-emission steel: Technologies available, prospects, timeline and costs. Luxembourg: European Parliament. Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/695484/IPOL_STU(2021)695484_EN.pdf.
61   Nicholas, S. and S. Basirat (2022). Iron ore quality a potential headwind to green steelmaking: Technology and mining options are available to hit net-zero steel targets. Institute for Energy Economics and Financial Analysis (IEEFA). Available at: https://ieefa.org/resources/iron-ore-quality-potential-headwind-green-steelmaking-technology-andmining-options-are.
62   Vogl, V., O. Olsson and B. Nykvist (2021). Phasing out the blast furnace to meet global climate targets. Joule, 5(10), 2646–62.
63   Ibid.
64   European Parliament (2021). Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure. Brussels: European Parliamentary Research Service (EPRS). Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690008/EPRS_STU(2021)690008_EN.pdf.
65   Kashyap, Y. (2022). Analysis: Costs and impacts of low-carbon technologies for steel and cement sectors in India. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/report-summary-costs-andimpacts-of-low-carbon-technologies-for-steel-and-cement-sectors-in-india/ [accessed May 2023].
66   Nicholas, S. and S. Basirat (2022). Iron ore quality a potential headwind to green steelmaking: Technology and mining options are available to hit net-zero steel targets. Institute for Energy Economics and Financial Analysis (IEEFA). Available at: https://ieefa.org/resources/iron-ore-quality-potential-headwind-green-steelmaking-technology-andmining-options-are.
67   European Parliament (2021). Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure. European Parliamentary Research Service (EPRS). Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690008/EPRS_STU(2021)690008_EN.pdf.
68   Fan, Z. and J. Friedmann (2021). Low-carbon production of iron & steel: Technology options, economic assessment, and policy. Center on Global Energy Policy at Columbia University. Available at: https://www.energypolicy.columbia.edu/publications/low-carbon-production-iron-steel-technology-options-economic-assessment-and-policy.
69   World Steel Association (2021). Fact sheet: Scrap use in the steel industry. Available at: https://worldsteel.org/wpcontent/uploads/Fact-sheet-on-scrap_2021.pdf [accessed May 2023].
70   Material Economics (2018). The circular economy – A powerful force for climate mitigation. Available at: https://circulareconomy.europa.eu/platform/en/knowledge/circular-economy-powerful-force-climate-mitigation.
71   World Steel Association (2021). Raw materials: Maximising scrap use helps reduce CO2 emissions. Available at: https://worldsteel.org/steel-topics/raw-materials/ [accessed May 2023].
72   Kashyap, Y. (2022). Analysis: Costs and impacts of low-carbon technologies for steel and cement sectors in India. Climate Policy Initiative (CPI). Available at: https://www.climatepolicyinitiative.org/report-summary-costs-andimpacts-of-low-carbon-technologies-for-steel-and-cement-sectors-in-india/ [accessed May 2023].
73   IEA (2020). Iron and steel technology roadmap, Energy Technology Perspectives. Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf.
74   IPCC (2022). Climate change 2022: Mitigation of climate change. Full report. Working Group III contribution to IPCC sixth assessment report., Cambridge: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/.
75   Material Economics (2018). The circular economy- a powerful force for climate mitigation. Available at: https://circulareconomy.europa.eu/platform/en/knowledge/circular-economy-powerful-force-climate-mitigation.
76   Ibid.
77   Material Economics (2018). The circular economy- a powerful force for climate mitigation. Available at: https://circulareconomy.europa.eu/platform/en/knowledge/circular-economy-powerful-force-climate-mitigation.
78   World Steel Association (2021). Steel industry key facts. Available at: https://worldsteel.org/about-steel/steelindustry-facts/ [accessed May 2023].
79   IEA (2020). Iron and steel technology roadmap. Energy Technology Perspectives, Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf.
80   Zeng, Y. and R. Cecil (2021). High-grade iron ore supply to struggle to meet demand as China decarbonizes: MI. S&P Global Market Intelligence. Available at: https://www.spglobal.com/commodityinsights/en/market-insights/latestnews/metals/060821-high-grade-iron-ore-supply-to-struggle-to-meet-demand-as-china-decarbonizes-mi [accessed May 2023].
81   Xie, H., et al. (2022). Progress in hydrogen fuel cell technology development and deployment in China. Available at: https://dx.doi.org/10.34667/tind.44764.
82   Vogl, V., M. Åhman, and L.J. Nilsson (2018). Assessment of hydrogen direct reduction for fossil-free steelmaking. Journal of Cleaner Production, 203, 736-45.
83   Blank, T.K. (2019). The disruptive potential of green steel. Insight brief, Rocky Mountain Institute (RMI). Available at: https://rmi.org/wp-content/uploads/2019/09/green-steel-insight-brief.pdf.
84   Sun, F., et al. (2021). Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nature Communications, 12(1), 4182.
85   Vogl, V., O. Olsson, and B. Nykvist (2021). Phasing out the blast furnace to meet global climate targets. Joule, 5(10), 2646-62.
86   European Parliament (2021). Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure. European Parliamentary Research Service (EPRS). Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690008/EPRS_STU(2021)690008_EN.pdf.
87   Hann, S. (2022). Is net zero enough for the material production sector?, Bristol: Eunomia Research & Consulting Ltd. Available at: https://zerowasteeurope.eu/wp-content/uploads/2022/11/Is-Net-Zero-Enough-for-the-Materials-Sector-Report-1.pdf.
88   LeadIT (2023). Green steel tracker. Leadership Group for Industry Transition (LeadIT). Available at: https://www.industrytransition.org/green-steel-tracker/ [accessed May 2023].
89   IEA (2020). Iron and steel technology roadmap. Energy Technology Perspectives, Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf.
90   Conejo, A.N., J.-P. Birat and A. Dutta (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of Environmental Management, 259, 109782.
91   OECD (2015). Energy efficiency in the steel sector: Why it works well, but not always. Paris: Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd.org/sti/ind/Energy-efficiency-steel-sector-1.pdf.
92   Stevens, I., et al. (2022). Policy options for a net-zero emissions UK steel sector, CREDS policy brief. Oxford, UK: Centre for Research into Energy Demand Solutions (CREDS). Available at: https://www.creds.ac.uk/publications/policy-options-for-a-net-zero-emissions-uk-steel-sector/.
93   Leoni, L., et al. (2021). Energy-saving technology opportunities and investments of the Italian foundry industry. Energies, 14(24), 8470.
94   UNIDO (2019). Industrial energy efficiency improvement project in South Africa. United Nations Industrial Development Organization (UNIDO). Available at: https://mkiee.ea.gov.mk/wp-content/uploads/2019/11/International-UNIDO-SAIEE-Project-Arcelormittal-Saldanha-Works-Case-Study.pdf.
95   ESCI (2022). Energy costs reduced by 40% in aluminium, steelworks and ceramics production. European Science Communication Institute (ESCI). Available at: https://www.youtube.com/watch?v=VQwTogBhYz8.
96   Gan, Y. and W.M. Griffin (2018). Analysis of life-cycle GHG emissions for iron ore mining and processing in China – Uncertainty and trends. Resources Policy, 58, 90–96.
97   Mourão, J. M., et al. (2020). Comparison of sinter and pellet usage in an integrated steel plant’ in ABM BRAZIL – 2013 Annual Congress. Belo Horizonte, Brazil.
98   European Commission (2017). Development of new methodologies for industrial CO2-free steel production by electrowinning. Available at: https://cordis.europa.eu/project/id/768788 [accessed May 2023].
99   Atmaca, A. and M. Kanoglu (2012). Reducing energy consumption of a raw mill in cement industry. Energy, 42(1), 261–69.
100   Kahawalage, A.C., M.C. Melaaen and L.-A. Tokheim (2023). Opportunities and challenges of using SRF as an alternative fuel in the cement industry. Cleaner Waste Systems, 4, 100072.
101   Griffiths, S., et al. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291.
102   IEA (2018). Technology roadmap: Low-carbon transition in the cement industry. Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/cbaa3da1-fd61-4c2a-8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf.
103   IEA (2022). Cement, Tracking report. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/cement.
104   The Concrete Centre (2020). Remixed: How concrete is evolving for a net-zero built environment. Concrete futures. Available at: https://www.concretecentre.com/TCC/media/TCCMediaLibrary/Publications/Promo%20Links/Concrete_Futures_Remixed_2020.pdf.
105   IRP (2020). Resource efficiency and climate change: Material efficiency strategies for a low-carbon future. Nairobi: International Resource Panel (IRP) and United Nations Environment Programme (UNEP). Available at: https://www.unep.org/resources/report/resource-efficiency-and-climate-change-material-efficiency-strategies-low-carbon.
106   Skinner, B. and R. Lalit (2023). With concrete, less is more. Rocky Mountain Institute (RMI). Available at: https://rmi.org/with-concrete-less-is-more/ [accessed May 2023].
107   Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.
108   Simoni, M., et al. (2022). Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews, 168, 112765.
109   Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.
110   JRC (2013). Best Available Techniques (BAT) reference document for the production of cement, lime and magnesium oxide. Geneva: Joint Research Centre (JRC). Available at: https://op.europa.eu/en/publication-detail/-/publication/12dbe9f3-28c6-44c9-8962-50a1359443d6.
111   JRC (2020). Deep decarbonization of industry: The cement sector. Brussels: European Commission Joint Research Centre (JRC). Available at: https://ee-ip.org/fileadmin/user_upload/IMAGES/Articles/JRC120570_decarbonisation_of_cement__fact_sheet.pdf.
112   IEA (2022). Cement. Tracking report, Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/cement.
113   Sawyer, T. (2016). The use of limestone as an extender and its effect on concrete properties. Unpublished thesis.
114   Fatahi, R., et al. (2022). Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAPXGBoost: A “conscious lab” approach. Scientific Reports, 12(1), 7543.
115   Liu, C., et al. (2022). Analysis and optimization of grinding performance of vertical roller mill based on experimental method. Minerals, 12(2), 133.
116   Boehm, A., P. Meissner and T. Plochberger (2015). An energy based comparison of vertical roller mills and tumbling mills. International Journal of Mineral Processing, 136, 37–41.
117   Griffiths, S., et al. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291.
118   Kahawalage, A.C., M.C. Melaaen and L.-A. Tokheim (2023). Opportunities and challenges of using SRF as an alternative fuel in the cement industry. Cleaner Waste Systems, 4, 100072.
119   Fennell, P., et al. (2022). Cement and steel- nine steps to net zero. Nature. Available at: https://www.nature.com/articles/d41586-022-00758-4 [accessed May 2023].
120   Griffiths, S., et al. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291.
121   Woolley, E., Y. Luo, and A. Simeone (2018). Industrial waste heat recovery: A systematic approach. Sustainable Energy Technologies and Assessments, 29, 50–59.
122   WWF (2008). How to turn around the trend of cement related emissions in the developing world. Gland, Switzerland: WWF International. Available at: https://wwfint.awsassets.panda.org/downloads/english_report_lr_pdf.pdf.
123   Rahman, A., et al. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99.
124   Brock, J., et al. (2021). ‘Trash and burn: Big brands stoke cement kilns with plastic waste as recycling falters’. Available: at: https://www.reuters.com/investigates/special-report/environment-plastic-cement/ [accessed September 2023].
125   Kahawalage, A.C., M.C. Melaaen, and L.-A. Tokheim (2023). Opportunities and challenges of using SRF as an alternative fuel in the cement industry. Cleaner Waste Systems, 4, 100072.
126   GCCA (2021). The GCCA 2050 cement and concrete industry roadmap for net zero concrete. Global Cement and Concrete Association (GCCA). Available at: https://gccassociation.org/concretefuture/wp-content/uploads/2021/10/GCCAConcrete-Future-Roadmap-Document-AW.pdf.
127   JRC (2020). Deep decarbonization of industry: The cement sector. Brussels: European Commission Joint Research Centre (JRC). Available at: https://ee-ip.org/fileadmin/user_upload/IMAGES/Articles/JRC120570_decarbonisation_of_cement__fact_sheet.pdf.
128   Kusuma, R.T., et al. (2022). Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 163, 112503.
129   JRC (2020). Deep decarbonization of industry: The cement sector. Brussels: European Commission Joint Research Centre (JRC). Available at: https://ee-ip.org/fileadmin/user_upload/IMAGES/Articles/JRC120570_decarbonisation_of_cement__fact_sheet.pdf.
130   Griffiths, S., et al. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291.
131   Simoni, M., et al. (2022). Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews, 168, 112765.
132   IEA (2022). Direct air capture. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/direct-air-capture
133   Hanifa, M., et al. (2023). A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization, 67, 102292.
134   IEA (2022). Direct air capture. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/direct-air-capture
135   JRC (2020). Deep decarbonization of industry: The cement sector. Brussels: European Commission Joint Research Centre (JRC). Available at: https://ee-ip.org/fileadmin/user_upload/IMAGES/Articles/JRC120570_decarbonisation_of_cement__fact_sheet.pdf.
136   Simoni, M., et al. (2022). Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews, 168, 112765.
137   Rahman, A., et al. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84-99.
138   Hanifa, M., et al. (2023). A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization, 67, 102292.
139   Monkman, S., et al. (2018). Activation of cement hydration with carbon dioxide. Journal of Sustainable Cement-Based Materials, 7(3), 160–81.
140   Simoni, M., et al. (2022). Decarbonising the lime industry: State-of-the-art. Renewable and Sustainable Energy Reviews, 168, 112765.
141   IPCC (2023). Synthesis report (SYR) of the IPCC sixth assessment report (AR6): Summary for policymakers. Geneva: Intergovernmental Panel on Climate Change (IPCC). Available at: https://www.ipcc.ch/report/ar6/syr/.
142   Patsavellas, J. and K. Salonitis (2019). The carbon footprint of manufacturing digitalization: Critical literature review and future research agenda. Procedia CIRP, 81, 1354–59.
143   Rauch, E. and D.T. Matt (2021). Status of the implementation of Industry 4.0 in SMEs and framework for smart manufacturing. In D.T. Matt, V. Modrák and H. Zsifkovits (eds), Implementing Industry 4.0 in SMEs: Concepts, examples and applications. Cham: Springer International Publishing, 3–26.
144   Arlbjørn, J.S., et al. (2019). Drivers and barriers for Industry 4.0 readiness and practice: A SME perspective with empirical evidence. In Hawaii International Conference on System Sciences. Grand Wailea, Maui, HI.
145   Fritzsche, K., S. Niehoff and G. Beier (2018). Industry 4.0 and climate change – exploring the science – policy gap. Sustainability, 10(12). Available: at https://www.mdpi.com/2071-1050/10/12/4511 [accessed September 2023].
146   Fritzsche, K., S. Niehoff, and G. Beier (2018). Industry 4.0 and climate change – exploring the science – policy gap. Sustainability, 10(12). Available: at https://www.mdpi.com/2071-1050/10/12/4511 [accessed September 2023].
147   Bieser, J.C.T., et al. (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033.
148   Fritzsche, K., S. Niehoff, and G. Beier (2018). ‘Industry 4.0 and climate change—exploring the science-policy gap’. Sustainability, 10(12). Available: at https://www.mdpi.com/2071-1050/10/12/4511 [accessed
149   Bieser, J.C.T., et al. (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033.
150   Bieser, J.C.T., et al. (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033.
151   IEA (2019). Energy efficiency 2019. Paris: International Energy Agency (IEA). Available at: https://www.iea.org/reports/energy-efficiency-2019.
152   WEF (2022). Digital solutions can reduce global emissions by up to 20%: Here’s how. World Economic Forum (WEF). Available at: https://www.weforum.org/agenda/2022/05/how-digital-solutions-can-reduce-global-emissions/ [accessed May 2023].
153   Chen, X., M. Despeisse and B. Johansson (2020). ‘Environmental sustainability of digitalization in manufacturing: A review’. Sustainability, 12(24)Available: at [accessed
154   GeSI (2020). Digital solutions for climate action. Brussels, Belgium: Global e-Sustainability Initiative (GeSI). Available at: https://gesi.org/research/download/52.
155   GeSI (2015). ICT solutions for 21st century challenges. Global e-Sustainability Initiative (GeSI). Available at: https://smarter2030.gesi.org/ [accessed August 2023].
156   Chen, X., M. Despeisse, and B. Johansson (2020). Environmental sustainability of digitalization in manufacturing: A review. Sustainability, 12(24).
157   IEA (2020). Iron and steel technology roadmap. Energy Technology Perspectives, Paris: International Energy Agency (IEA). Available at: https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf.
158   Haghdadi, N., et al. (2021). Additive manufacturing of steels: A review of achievements and challenges. Journal of Materials Science, 56(1), 64–107.
159   Peng, T., et al. (2018). Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Additive Manufacturing, 21, 694–704.
160   Sice, C. and J. Faludi (2021). Comparing environmental impacts of metal additive manufacturing to conventional manufacturing. Proceedings of the Design Society, 1, 671–80.
161   Dusík, J., et al. (2018). Strategic environmental and social assessment of automation: Scoping working paper. Available at: https://www.researchgate.net/publication/326461326_Strategic_Environmental_and_Social_Assessment_of_Automation_Scoping_Working_Paper.
162   Bieser, J.C.T., et al. (2023). A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology. Environmental Impact Assessment Review, 99, 107033.
163   GeSI (2020). Digital solutions for climate action. Brussels, Belgium: Global e-Sustainability Initiative (GeSI). Available at: https://gesi.org/research/download/52.
164   Jasonarson, I. (2020). Digitalization for energy efficiency in energy intensive industries. Unpublished thesis (Independent thesis advanced level), KTH.
165   Brozzi, R., et al. (2020). The advantages of Industry 4.0 applications for sustainability: Results from a sample of manufacturing companies. Sustainability, 12(9), 3647.
166   Kumar, P., J. Bhamu and K.S. Sangwan (2021). Analysis of barriers to Industry 4.0 adoption in manufacturing organizations: An ISM approach. Procedia CIRP, 98, 85–90.
167   Nhamo, G., C. Nhemachena and S. Nhamo (2020). Using ICT indicators to measure readiness of countries to implement Industry 4.0 and the SDGs. Environmental Economics and Policy Studies, 22(2), 315–37.
168   ITU (2022). Measuring digital development. International Telecommunication Union (ITU). Available at: https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/.
169   Sayem, A., et al. (2022). Critical barriers to Industry 4.0 adoption in manufacturing organizations and their mitigation strategies. Journal of Manufacturing and Materials Processing, 6(6), 136.
170   Chen, X., M. Despeisse, and B. Johansson (2020). ‘Environmental sustainability of digitalization in manufacturing: A review’. Sustainability, 12(24). Available: at [accessed
171   Dusík, J., et al. (2018). Strategic environmental and social assessment of automation: Scoping working paper. Available at: https://www.researchgate.net/publication/326461326_Strategic_Environmental_and_Social_Assessment_of_Automation_Scoping_Working_Paper.
172   Barteková, E. and P. Börkey (2022). Digitalisation for the transition to a resource efficient and circular economy, OECD Environment Working Papers, No. 192. Paris: Organisation for Economic Co-operation and Development (OECD). Available at: https://www.oecd-ilibrary.org/content/paper/6f6d18e7-en.
173   de Sousa Jabbour, A.B.L., et al. (2018). When titans meet – Can industry 4.0 revolutionise the environmentallysustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25.
174   Maghazei, O. and T. Netland (2020). Drones in manufacturing: Exploring opportunities for research and practice. Journal of Manufacturing Technology Management, 31(6), 1237–1259.
175   WEF (2021). Net-zero challenge: The supply chain opportunity, Insight report. World Economic Forum (WEF). Available at: https://www3.weforum.org/docs/WEF_Net_Zero_Challenge_The_Supply_Chain_Opportunity_2021.pdf.
176   GHG Protocol (2023). Greenhouse Gas Protocol FAQ. Available at: https://ghgprotocol.org/sites/default/files/standards_supporting/FAQ.pdf [accessed June 2023].
177   Gulda, M.P. (2021). How digitalization will enable completely different ways of working in steelmaking. H2 Green Steel. Available at: https://www.h2greensteel.com/stories/how-digitalization-will-enable-completely-different-ways-ofworking-in-steelmaking.
178   EU (2021). Digital transformation in European steel industry: State of art and future scenario. European Union (EU). Available at: https://www.estep.eu/assets/Uploads/ESSA-D2.1-Technological-and-Economic-Development-in-the-Steel-Industry-Version-2.pdf.
179   Nguyen, L.D., et al. (2022). Analysis of distributed ledger technologies for industrial manufacturing. Scientific Reports, 12(1), 18055.
180   Lehne, J. and F. Preston (2018). Making concrete change: Innovation in low-carbon cement and concrete. London: Chatham House. Available at: https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf.
181   McKinsey (2022). How a steel plant in India tapped the value of data – and won global acclaim, Impact story. McKinsey & Company. Available at: https://www.mckinsey.com/industries/metals-and-mining/how-we-help-clients/how-asteel-plant-in-india-tapped-the-value-of-data-and-won-global-acclaim [accessed May 2023].