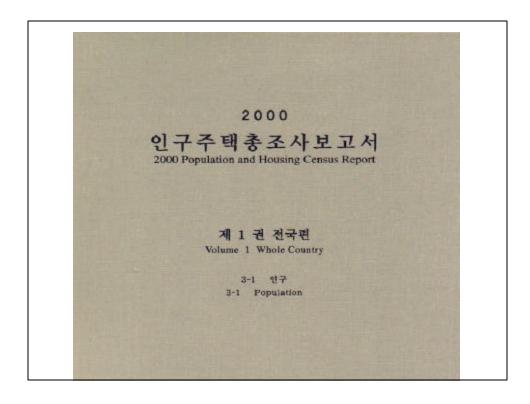
Patent Statistics and Economic Development Planning

Jong-an KIM

Korean Intellectual Property Office

Contents




- θ Introduction
- θ Patent statistics as an indicator for planning economic development
- θ Infrastructure for patent statistics
- θ Conclusion

I. Introduction

- θ Two aspects to be discussed
 - 1. Use of patent statistics
 - How governments use patent statistics when they plan economic development
 - 2. Infrastructure of patent statistics
 - How governments build the infrastructure of patent statistics to formulate economic development plan

II. Patent statistics as an indicator for planning economic development

- θ Economic policies and indicators in Korea
 - Indicators for industrial policy (selecting industries).
 - Macro-economic indicators
 - Insight of specialists
 - Indicators for R&D policy (selecting technologies)
 - Input / output indicators
 - Patent information

II-1 Beginning of economic development-

- θ Growth-oriented policies
 - Creation and expansion of social infrastruct ure
 - * Export-led industrialization rather than import-substitution industrialization
 - Economy based on heavy and chemical in dustries

II-1 Beginning of economic development-

- θ Planning process
 - Setting numerical goals
 - Selecting industries for investment
 - Fostering the industries with subsidies

II-2 Change of environment

- θ Threatened price competitiveness
 - Rising wages
 - Industrialization of Southeast Asia and China
- θ Establishment of the World Trade Organization (WTO)

II-2 Change of environment-the effects

- θ Restructure of industries
 - Rapid growth of capital-intensive and techn ology-intensive industries
- θ Rise of R&D policy
 - Recognizing the importance of R&D activities
 - Industrial policy fading away

II-3 In search of new indicators

- θ Indicators for efficient R&D policies
 - Indicators for evaluating R&D performance
 - · Tools for qualitative analysis
 - Indicators for R&D planning
 - Transform IPC code into general terms
 - Yale Technology Concordance (YTC)
 OECD Technology Concordance (OTC)

II-4 Examples of patent statistics in Korea

- θ Implications of application trends
 - ♣ Case of automobile industry
 - Maximum-application-year analysis
 - * Case of A61K
- θ Examples
 - * Patent trends of Korea 2002 / 2003
 - * National Science & Technology Council
 - 20,000 overseas patents (granted)

III. Infrastructure for patent statistics

- θ Tangible system
 - Database, data warehouse
 - . Fields to be included
- θ Intangible system
 - Criteria of statistics
 - Organization

Examples of infrastructure (tangible)

- θ On-line statistics
 - Advantage: real-time data
 - Disadvantage: overloading the system
- θ Data warehouse
 - Multi-dimensional on-line analytical processing (M OLAP): relatively fixed structure
 - Relational on-line analytical processing (ROLAP): relatively flexible structure

Examples of infrastructure (intangible)

- θ Organization
 - Patent statistics team
- θ Regulation
 - Instructions of patent statistics

IV. Conclusion

- θ What else patent statistics can do
 - Estimate the value of patent
 - ♣ Transform the IPC code
 - Higher level of patent information
- θ What else WIPO can do
 - Enhance the comparability and availability of int ernational statistics (e.g. the Green Book)
 - Advise developing countries

