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Abstract 
In developing countries’ innovation activities, limited patenting suggests structural gaps that hinder 
technological progress. This paper investigates whether countries can leverage their scientific and 
productive capabilities to realize untapped technological potential. We analyze connections between 
trade, science, and technology across global innovation ecosystems and introduce an indicator to 
assess where countries are positioned to expand their technological capabilities. Our results show that 
the indicator predicts technological output growth, though growth slows when countries exceed their 
predicted potential, indicating diminishing returns. The indicator performs better in more complex 
ecosystems. These findings provide valuable insights for policymakers, offering a framework to 
address weaknesses in innovation ecosystems and foster balanced, sustainable technological 
development.  
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Introduction 
Most countries have the production capabilities to participate in trade, many engage in 
advanced scientific research, but far fewer contribute significantly to patenting (WIPO, 2024). 
Not surprisingly, the latter group contains the most industrialized and advanced economies. 
These economies also have consolidated well-functioning innovation ecosystems.  

Innovation economics have long focused on how well-functioning innovation ecosystems 
establish strong technological linkages between its industrial and scientific bases (Edqvist, 
1997; Nelson, 1993). Evidence indicates that firms in such ecosystems will generate 
technological innovations from existing scientific knowledge and industrial networks (Crepon 
et al, 1998; Thursby and Thursby, 2007; Malerba, 2012). Similarly, there is evidence of firms 
capable of transforming their exporting experience into technological innovations (Keller, 
2006). 

Yet, why is it that some economies manage to transform scientific and production capabilities 
into novel technologies while others strive? The absence of patenting in developing 
innovation ecosystems indicates the existence of structural gaps limiting an expected 
technological progression. Is there a latent technological potential in developing economies 
based on their existing productive and scientific capabilities that could be untapped?  

This paper seeks to answer the latter question by developing a new metric of the 
technological innovation potential for innovation ecosystems. To do so, we make use of a 
novel dataset measuring the production of tradable goods, scientific publications and 
patented technologies of 160 economies for over 20 years to build a network of related 
capabilities (WIPO, 2024; Moscatelli et al, 2024). By examining how these dimensions 
interconnect in well-functioning innovation ecosystems, we identify patterns that drive 
successful technological development. Using data from international collections on exports, 
scientific publications, and patent families, we apply these insights to all countries globally, 
revealing not only where untapped technological potential exists, but also where the 
technological transformation exceeds its expected outcomes. 

This study contributes to the growing body of research on innovation as a multidimensional 
process, moving beyond traditional intra-dimensional approaches (Pugliese et al, 2019; 
Catalán et al, 2022; Balland, and Boschma, 2022). By adopting an inter-dimensional network 
approach, this research provides a tool to identify structural breaks in innovation ecosystems. 
The findings offer valuable insights for policymakers, helping them understand where 
scientific or production activities fail to translate into technological development, unlike in 
more virtuous ecosystems. 

The remainder of this paper is structured as follows: Section 1 motivates the paper by 
providing a review of the relevant literature and stating the main research questions. Section 
2 outlines the data sources and estimation approach to test the hypotheses. Section 3 
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explains the methodological approach used to measure technological potential. Section 4 
presents the results, highlighting key patterns and missing links in national innovation 
ecosystems. Section 5 discusses the implications of these findings and concludes with 
potential policy recommendations. Finally, additional details and supplementary analyses are 
provided in the annex. 

 

1 A literature roadmap to measuring technological innovation potential 
Innovation has become a central focus in economic development and policy, with numerous 
scholars examining the factors that drive a country’s capacity to innovate. Innovation and 
creative destruction has long been recognized as a key driver of economic growth (Aghion 
and Howitt, 1990), and numerous theories have been proposed to explain how different 
factors contribute to a nation’s innovative capacity.  

One foundational concept in this field is the “principle of relatedness” which states that the 
current set of productive capabilities that allows a country to competitively produce a set of 
products predicts the country’s likelihood to start producing a new product related to these 
skills (Hidalgo et al, 2007; Hidalgo and Hausmann, 2009).1 The authors introduced the idea of 
product relatedness and economic complexity, arguing that the diversity and complexity of a 
country’s productive capabilities are indicative of its potential for sustained economic growth. 
Building upon this, the relatedness-based approach posits that the extent to which a country’s 
industries and technologies are interconnected plays a crucial role in its capacity to innovate 
and compete in the global market (Hidalgo et al., 2018). 

Since this seminal work, a sizeable empirical economic literature kept testing the principle of 
relatedness by extending it to other units (e.g., regions or organizations) and other types of 
skills (e.g., scientific or technological skills). As a result, the positive relationship between a 
country’s capabilities —ranging from scientific research to technological expertise— and its 
ability to generate new competitive outputs has been widely studied (See, for example, 
Boschma et al., 2015; Hidalgo et al., 2018; Balland et al., 2019; Deegan et al., 2021; Hidalgo, 
2022; Rigby et al., 2022) 

A significant body of scholar work has explored the relationship between relatedness and 
innovation output (Kogler et al., 2023; Boschma, 2017; Rigby, 2015; Boschma et al.,2015). 
Studies have shown that innovation tends to occur more efficiently in ecosystems where 
industries and technologies are closely related, as knowledge spillovers and synergies can 
emerge more easily in such contexts (Pinheiro et al., 2022). These studies emphasize that 
innovation ecosystems with a higher degree of relatedness facilitate the transfer and 

 
1  Other scholars, such as Tacchelia et al. (2012), have proposed similar approaches that have 
contributed to solidifying the concept of relatedness.  
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application of knowledge, which drives technological advancements and competitive 
advantage. 

Another critical discussion in the literature concerns the correlation between innovation 
complexity and economic growth, as highlighted by Fagerberg et al. (2010) and Tushman and 
Anderson (1986). These studies have demonstrated that complex innovations – those that 
require diverse set of knowledge and capabilities – are often more likely to lead to significant 
economic development (Pintar and Scherngell, 2022; Mewes and Broekel, 2022; Fleming and 
Sorenson, 2001). Countries with highly complex and diverse innovation ecosystems tend to 
be more resilient to economic downturns and more capable of sustaining long-term growth 
(Steijn et al, 2023; Balland et al, 2015; Boschma, 2015). Conversely, less complex economies 
may struggle to innovate in competitive markets. 

 

1.1 Is there a cross-dimensional link between technological outcomes 
and scientific or productive capabilities? 

More recently, the relatedness and complexity strand of economic research has focused on 
understanding how these capabilities interact across different dimensions – such as science, 
technology, and production – extending the principle of relatedness across different types of 
skills (Pugliese et al., 2019; Catalán et al., 2022; Balland and Boschma, 2022; Castaldi and 
Drivas, 2023; Stojkoski et al., 2023; Moscatelli et al, 2024; Hausmann et al., 2024; Zhou et al, 
2025). These recent studies have extended the relatedness concept by allowing for several 
dimensions – such as scientific, product and technological fields – to interact with each other.  

First, measuring science, technologies and products, Pugliese et al. (2019) identified not only 
which cross-dimensional capabilities are needed to be competitive in another given one, but 
they also measure how much time is needed to transform it. Hausmann et al. (2024) propose 
that scientific publications, patents, and international trade data offer complementary 
insights into how ideas evolve, combine, and are transformed into innovation capabilities. 
Moscatelli et al. (2024) propose to inform innovation policymaking by analyzing the innovation 
potential across science, technology, and production fields of a given innovation ecosystem. 
Similar to Pugliese et al. (2019), these two papers also show that diversification opportunities 
can be inferred across innovation domains 

Focusing on the link between science and technology, Catalan et al. (2022) explore the 
scientific and technological cross-density finding that countries observe a higher entry 
probability on a given the technology the higher is their cross-dimensional scientific 
relatedness to it. Balland and Boschma (2022) extend the country-level scientific and 
technological cross-dimensional analysis to European NUTS-2 regions. They find that regional 
scientific capabilities are a strong predictor of related new technologies in the same region. 
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Castaldi and Drivas (2023) provide an original extension using three intellectual property (IP) 
rights by analyzing the cross-dimensional capabilities across patents, industrial designs, and 
trademarks for NUTS-2 European regions and metropolitan statistical areas (MSAs) in the US. 
They find that cross-relatedness played a significant role in the emergence of new regional 
specializations for all three IP dimensions. Stojkoski et al. (2023) combining the complexity 
metrics from science, technologies and products provides a better predictive power in 
understanding the inclusive growth of regions and countries. Zhou et al (2025) extend the 
cross-dimensional approach to capture the interaction between industries and occupations 
in China’s cities. They find cross-relatedness are significantly associated with new regional 
specializations in the co-evolution of industries and occupations, particularly in larger cities. 

 

1.2 Can scientific or productive capabilities predict technological 
outputs? 

What explains the cross dimensional relatedness found in empirical literature? In regard to 
innovation economic literature, there are many paths explaining why the principle of 
relatedness works cross-dimensionally. 

First, likely inspired by the seminal work by V. Bush (1945), many innovation economists 
consider that technological innovation happens in a big extent thanks to a “science push” 
(Godin, 2006). At the macro level, economies that invest and produce more science are 
expected to produce more technologies (Rosenberg, 1974).  

At the public organization level, many economists and social scientists have looked at how 
universities transfer knowledge to the private sector (Thursby and Thursby, 2007). This has 
inspired science and innovation policies -- such as the Bayh-Dole Act -- seeking to stimulate 
academic patenting to facilitate public to private technological transfer (Mowery et al. 2001, 
2015). Similarly, defense related research also found to be influencing downstream civil use 
innovation (Gross and Sampat, 2020a, 2020b).  

This has also been largely studied from the private sector perspective. Several firm level 
studies have explored how public academic institutions are a significant source for the firm’s 
technological innovation (Crepon et al, 1998; Raffo et al, 2008). 

Second, innovation economists have also indicated that innovation is not a linear cognitive 
process that only moves from public scientific output to private technological innovation 
(Kline, 1985). Indeed, core concepts of the innovation economic literature indicate multiple 
paths from industrial production to technological innovation.  

Arrow’s (1962) famous “learning by doing” concept points to the fact that the more a company 
produces a given product the more likely it will develop a deeper understanding of the related 
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industrial process, opening opportunities to develop more efficient techniques (process 
innovation) or improve the product (product innovation).   

Similarly, Cohen and Levinthal’s (1989, 1990) seminal work on absorptive capacity offer 
support for several cross-dimensional relatedness paths. Companies operating in industries 
with active innovation environments are more likely to improve their scientific and 
technological skills so to better “absorb” the external available knowledge. Cohen and 
Levinthal propose several sources that provoke such an increase in scientific and 
technological capacities to firms. In addition to active public scientific systems, companies 
operating in industries with technology active competitors or in markets with unsatisfied 
demand for technologies are expected to invest more in research and development activities. 
There is a vast firm level empirical literature inspired by Cohen and Levinthal and applying 
the CDM empirical approach 2  consistently finding that public academic institutions, 
competitors and demand are significant source for the firm’s technological innovation (e.g., 
Cohen and Levinthal, 1989, 1990; Crepon et al, 1998; Raffo et al, 2008).  Moreover, innovation 
scholars have also found that this absorptive capacity mechanism can lead to innovative 
companies – especially the large ones – to increasingly publish peer-reviewed scientific 
articles (Simeth and Raffo, 2013; Simeth and Cincera, 2016). 

In the trade related literature prompted among others by Bernard and Jensen (1999), the 
concept of “learning by exporting” suggests that the participation in competitive markets 
induces technological innovation (Keller, 2004; Fernandes and Isgut, 2005; Salomon and 
Shaver, 2005; Harris and Li, 2007; Loecker, 2010). The intuition is not far from the absorptive 
capacity concept. Firms operating in highly competitive markets – such as international trade 
– face increasing pressure to deliver products of a higher quality and a lower price. Both 
elements induce firms to develop new products and processes, leading to technological 
innovation.  Likewise, the literature on sectoral innovation ecosystems (Malerba and Orsenigo, 
1993; Breschi and Malerba, 1997; Malerba, 2002) or global supply chains (Gereffi et al., 2005; 
Pietrobelli and Rabellotti, 2011) indicate that substantial technical knowledge is transferred 
within an industry’s supply chain. For instance, highly specialized suppliers of the automotive 
or aerospace industries often innovate through collaboration with the main assembly clients.  

 

1.3 Using network approaches to connect across innovation dimensions 
Both the empirical cross-dimensional economics literature and vast innovation economics 
literature agree that in that the principle of relatedness applies across dimensions, which 

 
2 The CDM approach stems from the seminal work by Crépon, Duguet and Mairesse (1998) where 
technological innovation is modeled as the output of absorptive capacity (R&D intensity), which in turn 
is modeled as the output of several sources for information such as public academic institutions, 
competitors and demand, amongst other variables. 
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indicates that past related scientific and production capabilities can predict the development 
of new technological capabilities (entry) and output. Following the exploratory work in 
Moscatelli et al (2024), we propose in this paper to extend these results to develop a metric of 
potential technological output. In other words, the resulting relatedness network connecting 
scientific and productive capabilities with technological ones allows us to impute a future 
technological output.  

While the details of how we implement the indicator are discussed in the following section, 
we now turn to what should be expected of such an indicator. First, if the indicator is well 
conceived, we should expect that the potential technological output should positively predict 
future observed technological output (H1). Second, and reciprocally, innovation ecosystems 
should converge to their expected potential (H2). Indeed, innovation ecosystems will likely 
also reduce their technological output if their potential is below the observed output.  

Following the product and technological complexity literature, we could also expect that the 
potential technological output cannot be transformed equally into future observed one 
depending on its complexity. Two contradicting effects may operate here. First, we can expect 
that firms, entrepreneurs or research labs are more likely to transform scientific or productive 
capabilities into technological ones the higher the reward there is for the new technological 
capability. As a result, rational economic agents will have more incentives to make the effort 
to transform the more complex the resulting technological output is (H3a). Conversely, the 
potential output in more complex technological fields is harder to achieve than in less 
complex ones. In this case, the higher cost of learning may operate against selecting the more 
complex fields (H3b).  

From an innovation ecosystem perspective, we can expect that countries or regions with 
better functioning innovation institutions and policies are more likely to be prepared to 
leverage their technological potential. Indeed, due to their higher absorptive capacity, we can 
also expect that more complex innovation ecosystems are more likely to fulfill their potential 
(H4). 

The main hypotheses to be tested are listed as follows: 

H1:  Potential technological output positively predicts future observed technological output  

H2: Innovation ecosystems converge to their expected potential 

H3a: Potential output is more likely to be achieved in more complex technological fields than 
in less complex ones (incentives effect) 

H3b: Potential output is more likely to be achieved in less complex technological fields than 
in more complex ones (learning costs effect) 

H4: Innovation ecosystems with higher absorptive capacity are more likely to fulfill their 
potential 
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2 Data and empirical strategy  
This paper intends to contribute to the intersection of these critical debates in the literature 
from the previous section by offering a new framework to measure innovation potential. Our 
suggested measure integrates the concept of latent technological capabilities with the 
dynamic interrelationships of science, technology, and production. 

In order to do so, we analyze a dataset that includes 626 distinct fields of innovation in the 
period 2001-2020, sourced from PATSTAT and WIPO, Web of Science, and UN COMTRADE. 
These data sources provide comprehensive coverage of scientific progress, technological 
advancement, and production across countries, enabling a deeper understanding of national 
innovation ecosystems. 

For scientific articles, we utilize data from the Web of Science, specifically the Science Citation 
Index Expanded collection, which encompasses scholarly articles published in internationally 
recognized academic journals grouped in 169 scientific fields. The publications are assigned 
to countries based on author affiliations, ensuring accurate attribution of scientific output to 
the respective national innovation ecosystems. As our focus is on the academic fields that 
may affect technological potential, social sciences and humanities fields were excluded from 
this analysis. We proxy technological output using patent data sourced from PATSTAT and 
WIPO databases. We focus on foreign-oriented patent families, which represent inventions 
for which patent protection has been sought beyond the applicant’s country (Miguelez et al., 
2019) and grouped in 172 technological fields. Finally, we make use of the export flows in the 
UN COMTRADE database for 285 distinct goods and services fields.3  

Finally, we group the yearly data in five 4-year periods (2001-2004, 2005-2008, 2009-2012, 
2013-2016, 2017-2020). This aggregation helps mitigate the high volatility of innovation 
outputs, particularly in the scientific and productive dimensions, ensuring a more stable 
representation of capabilities over time. Shorter timeframes, such as single-year periods, 
have proven to be too sensitive to annual fluctuations, making it difficult to capture consistent 
and meaningful patterns in national innovation ecosystems. By using four-year windows, we 
smooth out temporary spikes or dips while still preserving the dynamism of innovation trends. 

The initial dataset contains 513,320 observations representing the outputs for 626 fields of 
innovation –i.e. scientific, technological and production fields – in 164 countries for the period 
2001-2020 (grouped into five 4-year periods). The number of observations is then reduced 
when focusing on the 172 technological fields and removing countries without innovation 
capabilities. 

 
3  The focus on international outputs across these three domains is intentional. By analyzing 
internationally recognized measures of innovation, we can ensure a level of comparability across 
countries and avoid domestic biases and lack of coverage. 
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2.1 Empirical strategy 
We analyze the evolution of the potential of technological outcome over time to test if 
innovation ecosystems converge to their expected outputs, particularly for the case of 
technologies using both science and production.  

In order to address the hypotheses mentioned in the previous section, we formulate a 
baseline model that captures the growth of innovation outputs as a function of the past 
innovation outputs and idiosyncratic country and innovation field determinants. To test the 
predictive power of technological potential (H1), we add our main variable of interest to the 
baseline model. We also then introduce interactions to account for the convergence (H2), the 
field complexity (H3) and the innovation ecosystem complexity (H4).  

Formally, the main model is expressed as follows: 

𝑎𝑠𝑖𝑛ℎ(𝑂𝑢𝑡𝑝𝑢𝑡𝑐,𝑓,𝑡/𝑂𝑢𝑡𝑝𝑢𝑡𝑐,𝑓,𝑡−1) = 𝜃 𝑎𝑠𝑖𝑛ℎ(𝑂𝑢𝑡𝑝𝑢𝑡𝑐,𝑓∈𝑇,𝑡−1) + 𝛽1 𝑎𝑠𝑖𝑛ℎ (𝑃𝑂𝑇𝑓∈𝑇,𝑐,𝑡−1
𝑑 ) +

𝛽2 𝑎𝑠𝑖𝑛ℎ(𝑃𝑂𝑇𝑓∈𝑇𝑐,𝑡−1
𝑑 ) × 𝑢𝑛𝑡𝑎𝑝𝑝𝑒𝑑𝑐,𝑓∈𝑇,𝑡−1 + 𝛽3 𝑎𝑠𝑖𝑛ℎ(𝑃𝑂𝑇𝑓∈𝑇,𝑐,𝑡−1

𝑑 ) × 𝑃𝐶𝐼𝑓∈𝑇,𝑡−1
∗ +

𝛽4 𝑎𝑠𝑖𝑛ℎ(𝑃𝑂𝑇𝑓∈𝑇,𝑐𝑡−1
𝑑 ) × 𝐸𝐶𝐼𝑐,𝑡−1

∗ + 𝑅𝐷𝑐,𝑓∈𝑇,𝑡−1 + 𝛼𝑡 + 𝛼𝑐 + 𝛼𝑓∈𝑇 + 𝜀𝑐,𝑓∈𝑇,𝑡  (1) 

Where:  

• 𝑂𝑢𝑡𝑝𝑢𝑡𝑐,𝑓∈𝑇,𝑡 is the number of outputs of innovations for country 𝑐 in technological 
fields 𝑓 ∈ 𝑇 and period 𝑡. 

• 𝑇 is the set of technological fields.  
• 𝑃𝑂𝑇𝑓∈𝑇,𝑐,𝑡−1

Dn  is the expected number of technological innovations (𝑇) for country 𝑐 in 

field 𝑓 and period 𝑡 that are based on outputs from dimension 𝑑 ∈ 𝐷. 
• 𝐷 is the set of dimensions of innovation (technologies, science, and production).  
• 𝑢𝑛𝑡𝑎𝑝𝑝𝑒𝑑𝑐,𝑓∈𝑇,𝑡−1

∗  is a binary variable that identifies when potential is greater than 
outputs for country 𝑐 in technological field 𝑓 and period 𝑡 − 1. 

• 𝑅𝐷𝑐,𝑓∈𝑇,𝑡 is the relatedness density of country 𝑐 in technological field 𝑓 and period 𝑡 −
1. 

• 𝐸𝐶𝐼𝑐,𝑡−1
∗  is the economic complexity index for country 𝑐 and period 𝑡 − 1 

• 𝑃𝐶𝐼𝑓,𝑡−1
∗  is the product complexity index for technological field 𝑓 and period 𝑡 − 1. 

• 𝛼𝑡 + 𝛼𝑐 + 𝛼𝑓∈𝑇 are the time, country and technological field effects. 

We use a fixed-effects OLS estimator model to account for the country (𝛼𝑐), field (𝛼𝑓) and 
period (𝛼𝑡) idiosyncratic effects. Additionally, we use as a dependent variable the change in 
technological outputs of the past period. We use growth rates since time series and panel 
data to avoid any unit root problems frequently arising in non-stationary data, which can lead 
to spurious correlations.  
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We also apply the inverse hyperbolic function transformation to outputs and potentials 
instead of natural logarithms to avoid dropping the negative and zero values.4and perform a 
z-score normalization to these variables to be able to compare the coefficients between the 
variables in standard deviation units. 

To capture the persistence and potential feedback effects of technological outputs over time, 
we keep a lagged version of how past levels of technological outputs influence future growth. 

𝐸𝐶𝐼𝑐,𝑡
∗  is computed at country-period level. This treats each country-period observation as a 

different country. This allows to compare the ecosystem complexity over time, under the 
assumption that field capabilities do not change over this time. Indexes are then max min 
normalized. 

𝑃𝐶𝐼𝑓,𝑡
∗  is computed at field-period level. This treats each field-period observation as a different 

field. This allows to compare the capability complexity over time. This allows to compare the 
ecosystem complexity over time, under the assumption that country capabilities do not 
change over this time. Indexes are then max min normalized. 

Finally, we include a dummy variable to identify cases of untapped potential (where potential 
is higher than actual outputs), the relatedness density (𝑅𝐷𝑐,𝑓,𝑡 ) to control for its effect in 
output growth (principle of relatedness) plus fixed effects for time (𝛼𝑡) country (𝛼𝑐), field (𝛼𝑓) 
and dimension from where the potential estimation comes from (𝛼𝑛).  

We now turn to how we construct our innovation potential indicator. 

3 Defining technological innovation potential  
Based on this dataset, we build a technological innovation potential indicator seeking to 
identify how a country’s outputs in one scientific or production field can predict the outputs 
in a technological field. Our goal is to allow policymakers and researchers to better 
understand and support the untapped potential within innovation ecosystems.  

Following Moscatelli et al (2024), we build this indicator by (1) defining multidimensional 
innovation capabilities, (2) establishing a benchmark of high-performing innovation 
ecosystems, and (3) setting a vector of weights based on the network of cross-dimensionally 
relatedness between these capabilities in the high-performing group. We describe these as 
follows. 

 

 
4 The inverse hyperbolic sine (asinh(𝑥) = ln⁡(𝑥 + √𝑥2 + 1)) transformation is used to handle small and zero values 
in the growth rate data, as it allows for smooth handling of such values, unlike the logarithm. This transformation 
is commonly used in economics, particularly when dealing with skewed data or small values.  
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3.1 Innovation capabilities 
This study follows Moscatelli et al (2024), by merging absolute and relative advantage 
capability algorithms to capture the ability of innovation ecosystems to generate competitive 
outputs. Capabilities are then assigned to countries based on the origin of their scientific 
publications, patents, and product exports. Scientific capabilities are linked to the country of 
the university affiliation address of the authors. Patent capabilities are attributed to the 
inventors' country addresses, while production capabilities are assigned based on the country 
of origin of the manufactured products and services.  

Much like most of the literature on this topic, to systematically analyze innovation capabilities, 
we first binarize the capabilities assigned to each country. A country is considered to have a 
capability in a specific field if its presence surpasses a given threshold.  

𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐,𝑓,𝑝
𝑖𝑛𝑛𝑜 = {⁡

1⁡⁡⁡⁡𝑖𝑓⁡𝑅𝐶𝐴𝑐,𝑝,𝑓 ≥ 1⁡𝑜𝑟⁡𝐻𝐻𝐼𝑝,𝑓
−1 ≥ 𝑅𝑎𝑛𝑘𝑐,𝑝,𝑓 ≥ 3 ∗ 𝐻𝐻𝐼𝑝,𝑓

−1 ⁡

⁡0⁡⁡⁡𝑖𝑓⁡𝑅𝐶𝐴𝑐,𝑝,𝑓 < 1⁡𝑜𝑟⁡3 ∗ 𝐻𝐻𝐼𝑝,𝑓
−1 ≤ 𝑅𝑎𝑛𝑘𝑐,𝑝,𝑓

   (2) 

Where: 

• ⁡𝑅𝐶𝐴𝑐,𝑝,𝑓⁡is the revealed comparative advantage (Balassa, 1965) for country 𝑐 in period 
𝑝 in field 𝑓 

• 𝐻𝐻𝐼𝑝,𝑓
−1 is the inverse Herfindalh-Hirshmann index in period 𝑝 for field 𝑓 that captures 

the number of effective countries that represent the field in each period. 
• 𝑅𝑎𝑛𝑘𝑐,𝑝,𝑓 is the ranking for country 𝑐 in period 𝑝 for the total number of outputs in 

field 𝑓, where the highest producer of each field in each period is assigned 1. 

Transforming the data into a matrix of 1s and 0s allows us to measure relatedness between 
fields by analyzing how often they co-occur in the same national ecosystems. These 
relatedness patterns, in turn, enable us to derive complexity indicators, which assess the 
sophistication of a country’s innovation capabilities and its ability to engage in competitive, 
high-value activities. 

This assignment of capabilities aligns with established findings in the literature, particularly 
with respect to the principle of relatedness — the idea that countries tend to develop new 
capabilities in fields that are closely related to their existing strengths (Hidalgo et al., 2007). 
Furthermore, the approach builds on prior work demonstrating that capability complexity is 
strongly correlated with economic growth (Hausmann et al., 2014; Tacchella et al., 2012). 

 

3.2 High-performing innovation ecosystems 
Having established a systematic framework for measuring innovation capabilities across 
countries, the next critical step involves identifying which ecosystems demonstrate superior 
performance that could serve as benchmarks for others. Rather than relying on 
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predetermined assumptions about which countries should be considered innovation leaders, 
we adopt a bottom-up, data-driven approach that allows the empirical evidence to reveal the 
ecosystems with the most robust innovation capabilities. 

This methodology is particularly crucial given that innovation activities are highly 
concentrated globally, with a small number of ecosystems accounting for a disproportionate 
share of technological advancement and knowledge creation (WIPO, 2024). By employing this 
data-driven identification process, we enable the capability patterns themselves to identify 
those ecosystems that have successfully developed and maintained high-performing 
innovation portfolios—ecosystems that other countries might realistically aspire to emulate. 
This approach ensures that our benchmark selection is grounded in observable innovation 
outcomes rather than preconceived notions, providing a more objective foundation for 
understanding what constitutes excellence in innovation ecosystem performance. 

We define as high-performing innovation ecosystems as the set of countries that are at the 
frontier of technological, scientific, and productive capabilities. These countries are 
characterized by their ability to drive innovation across all dimensions, pushing the 
boundaries of what is technologically and economically possible.  

In this work, the countries are selected using a bottom-up approach that clusters countries 
based on the similarities of the innovation capabilities using a K-means clustering method. 
The first step is to create a proximity matrix 𝑃𝑐,𝑐 that pairs countries based on the similarity of 
their capabilities. We use the capability matrix 𝑀𝑐,𝑓⁡ (commonly referred as 𝑀c,p  in the 
literature) to compute it. If 𝑀𝑐 and 𝑀𝑐′ represent the binary capability vectors (rows from the 
𝑀𝑐𝑓⁡matrix) for countries 𝑐 amd 𝑐′ then their proximity is computed as: 

𝑃𝑐,𝑐′ =⁡
𝑀𝑐⁡𝑀𝑐′

||𝑀𝑐||||𝑀𝑐′||
         (3) 

The algorithm minimizes the sum of squared distances between each data point and the 
centroid of its assigned cluster: 

min
𝐶1…⁡𝐶𝐾

∑ ∑ ||𝑃𝑐,: − 𝜇𝑖||
2

𝑐∈𝐶𝑖
𝐾
𝑖=1         (4) 

Where:  

• 𝑘 is the number of clusters. 
• 𝐶𝑖 is the set of countries in cluster 𝑖. 
• 𝜇𝑖 is the centroid of cluster 𝑖, computed as the mean proximity vector of countries in 

𝐶𝑖. 

Finally, one the clustering is finished, we evaluate the groups to find significant differences 
between them. The selection criteria for determining which cluster represents the frontier of 
well-functioning ecosystems are grounded in established findings in the literature, where 
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higher capability diversity, capability complexity, and output competitiveness are positively 
correlated with higher levels of economic development and innovation performance. 

 

To differentiate countries based on the performance of their innovation ecosystems, we 
applied a K-means clustering algorithm using the proximity matrix. We selected 𝑘 = 4 , 
aligning with the World Bank income classifications: low, lower-middle, upper-middle, and 
high income. While our clustering is data-driven and based on innovation metrics rather than 
income levels, the resulting groups roughly mirror these traditional classifications. 

Figure 1. Distribution of GDP per capita, diversity, and complexity across innovation capability 
clusters, 2001-2020.  

 

Within this grouping, Figure 1. Distribution of GDP per capita, diversity, and complexity across 
innovation capability clusters, 2001-2020. shows how cluster 1 stands out in terms of income 
levels, complexity, and diversity across all periods. It is the one with the highest GDP per 
capita, the most diverse, and the most complex. Throughout the 5 periods of this work, 32 
different national innovation ecosystems belong to it.  

Only 18 ecosystems belong to cluster 1 in all five periods. These are: Australia, Austria, 
Belgium, Canada, Switzerland, China, Germany, Denmark, Spain, Finland, France, United 
Kingdom, Italy, Japan, Republic of Korea, Netherlands, Sweden, and the United States. 

Some ecosystems only appear once (Singapore and Hungary), while others twice (India, 
Mexico, New Zealand, Poland, and Portugal), and thrice (Brazil, Czechia, Israel, Norway, Russia, 
and Turkey). None appears four times.  

This work will treat any country that has managed to get into this select cluster as a well-
functioning innovation ecosystem.  

 

3.3 Inter-dimensional connections and weights 
The interplay between the three dimensions in the innovation frontier can provide valuable 
insights into the latent capabilities of countries, particularly for developing ecosystems that 
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may have unbalanced participation in these dimensions. By analyzing the co-occurrence of 
capabilities in developed ecosystems, we aim to identify the proximity between different pairs 
of dimensions—science vs. technology, science vs. production, and technology vs. 
production—that are statistically significant (Pugliese et al., 2019). 

To begin our computation of connections by using subsets of the capability matrix 𝑀𝑐,f for 
each period. These binary matrices have 164 rows (number of countries), and 626 columns 
(number of fields) and are populated with 0s and 1s based on the presence of a capability in 
any field-country combination. For every period, we define 𝑂𝑖,𝑗𝑜𝑏𝑠  as the observed overlap 
between field 𝑖𝑚  in dimension 𝑚 and field 𝑗𝑛  in dimension 𝑛, where both fields belong to 
ecosystems that are part of the frontier Ĉ. Formally: 

𝑂𝑖𝑚,𝑗𝑛
𝑜𝑏𝑠 =  ∑ 𝑀𝑐̂,𝑖𝑚𝑀𝑐̂,𝑗𝑛𝑐̂   where: 𝑖𝑚 ∈ 𝐷𝑚⁡, 𝑗𝑛 ∈ 𝐷𝑛⁡, 𝑐̂ ∈ Ĉ  (5) 

In parallel, we calculate the expected cooccurrence 𝑂𝑖𝑚,𝑗𝑛

𝑒𝑥𝑝  in a randomized scenario and keep 

significant connections to achieve 𝑂𝑖𝑚,𝑗𝑛
∗ . For this exercise we use 95% as the threshold of 

significance. Formally: 

𝑂𝑖𝑚,𝑗𝑛

𝑒𝑥𝑝
=  

∑ 𝑀𝑐̂,𝑖𝑚
∑ 𝑀𝑐̂,𝑗𝑛𝑐̂𝑐̂

𝑁Ĉ

 where: 𝑁𝐶̂ = 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠⁡𝑖𝑛⁡𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 (6) 

Finally, we filter out the overlaps that do not meet the significance threshold as follows: 

𝑂𝑖𝑚,𝑗𝑛
∗ =  {

∑ 𝑀𝑐̂,𝑖𝑚𝑀𝑐̂,𝑗𝑛     𝑖𝑓   𝑂𝑖𝑚,𝑗𝑛
𝑜𝑏𝑠  > 𝑂𝑖𝑚,𝑗𝑛

𝑒𝑥𝑝
+ 1.96𝜎𝑖𝑚,𝑗𝑛𝑐̂

0                       𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒                               
    (7) 

The 𝑂𝑖𝑚,𝑗𝑛
∗  matrix captures only the statistically significant proximities between fields, filtering 

out co-occurrences that could arise by chance. By doing so, it highlights the structural 
relationships within well-functioning ecosystems, revealing how capabilities in one dimension 
(e.g., science) tend to be systematically associated with capabilities in another (e.g., 
technology or production). 

The filtered network of connections offers a refined map of interdependencies. The 
significance threshold ensures that only robust and meaningful linkages remain, 
distinguishing genuine capability connections from incidental ones. Building on this 
framework, we now turn to estimating technological potential by leveraging these 
interdimensional proximities to predict innovation outputs across fields. 

This subsection examines the significant edges connecting different fields of innovation 
across science, technology, and production in well-functioning national innovation 
ecosystems. In total, the analysis covers 626 capabilities across five time periods, resulting in 
a proximity matrix of 626 × 626 field pairs for each period. Each pair of fields is assigned a 
proximity value ranging from 0 to 1, reflecting the strength of their co-occurrence within the 
national innovation ecosystems at the frontier. However, not all observed proximities are 
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statistically significant—many may arise by chance rather than reflecting meaningful 
innovation linkages.  

To focus on robust and meaningful relationships, we filter out non-significant connections 
using a 95% significance threshold. After this filtering process, we retain a total of 33,318 
significant edges across periods (1.7% of all connections) that connect 613 nodes (98% of all 
fields). These edges represent the strongest and most reliable connections between fields of 
innovation and form the backbone of the network we analyze, highlighting where relatedness 
between scientific, technological, and productive capabilities are most consistently found in 
the world's leading innovation ecosystems. 

Figure 2. Innovation capability space with most significant connections, 2017-2020.  

 

Figure 2. Innovation capability space with most significant connections, 2017-2020. shows the 
results of this exercise for the 2017-2020 period in which dots represent the fields of 
innovation that are connected by the filtered edges. In total, 536 fields out of 626 (86%) have 
at least one significant connection with any other field of innovation. Production is the most 
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Technology

 imension



16 

connected dimension, with 92% of its nodes connected, followed by technologies (85%) and 
science (75%).  

Significant connections show a prevalence of connections within the same dimensions (58% 
of all edges), led by technology, and followed by science and production. Technology is also 
the most connected in interdimensional connections, as they are present in 78% of all these 
types of connections. 

Figure 3. Evolution of connected nodes and significant edges, 2001-2020.  

 

The distribution of nodes and edges can be found in Figure 3, with the additional insight that 
significant connections and nodes vary over time. The Figure shows the evolution of the share 
of active nodes by dimension, and the share of active edges over all possible combinations of 
each type of edge. Our results show that technological connections are becoming less 
common, both within its dimension and with the other two.  
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Figure 4. Evolution of centrality indicators, 2001-2020.  

 

Despite this downward trend in connectivity, technologies remain at the center of the network. 
Figure 4 shows that between 2004 and 2020, the network structure remained remarkably 
stable across all centrality indicators. The technological dimension consistently demonstrated 
the highest average centrality across degree, closeness, betweenness, and eigenvector 
measures5, indicating its role as the core hub of connectivity and influence within the network. 
In contrast, the production and scientific dimensions maintained lower but increasing 
centrality values, suggesting their peripheral positioning. The persistence of these patterns 
highlights a mature and well-defined network structure, with technologies acting as the 
primary conduit for interaction and influence.  

These findings underscore the dynamic nature of innovation ecosystems at the frontier, 
where the interplay between scientific, technological, and productive capabilities has become 
increasingly structured and selective over time. While technological connections have 
declined in relative prevalence, they remain central to the network. The overall network of 
significant complementarities remains robust, providing a clear map of the most consistent 
and meaningful linkages between fields. Building on this network, we leverage these 
proximities to estimate countries' technological potential and explore how well this indicator 
captures the opportunities and constraints that shape their innovation outputs. 

 

3.4 Defining technological potential 
The matrix of pairwise significant proximities between the fields of innovation that result from 
the previous step is then used to build the bridge between the different dimensions of 
innovation. These proximities will then allow us to use the innovative outputs of one 
dimension (science, for instance) to predict the output in another (technologies).  

To calibrate the concordance between innovation outputs of different dimensions, we assume 
that for all the ecosystems in the innovation frontier, the predictions will equal the actual 

 
5 Degree centrality indicators measure the number of direct connections a node has relative to the network. 
Closeness, how quickly a node can reach all other nodes. Betweenness, how often a node sits on the shortest path 
between two other nodes. Eigenvector centrality measures how connected the node’s neighbors are—important 
nodes connected to other important nodes have higher scores. 
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outputs of every field. The weight factor that corrects the volumes between dimensions is 
named Г𝑖𝑚

𝐷𝑛→𝐷𝑚 , which indicates the number of units of 𝐷𝑛 that equals one unit of 𝑖𝑚ϵ 𝐷𝑚. 

Formally:  

Г𝑖𝑚
𝐷𝑛→𝐷𝑚 ∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑗𝑛

𝐷𝑛𝑂𝑖𝑚𝑗𝑛
∗

𝑗𝑛
= 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚

𝐷𝑚 ,   ∀𝑗𝑛ϵ 𝐷𝑛, ∀𝑖𝑚ϵ 𝐷𝑚    (8) 

⇒ Г𝑖𝑚
𝐷𝑛→𝐷𝑚 =

𝑂𝑢𝑡𝑝𝑢𝑡 𝑖𝑚

𝐷𝑚

∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑗𝑛
𝐷𝑛𝑂𝑖𝑚𝑗𝑛

∗
𝑗

         (9) 

This assumption, by definition, will have, for every field, some ecosystems in the frontier 
group that are better at transforming their innovative outputs than the average, and others 
that are worse at doing so. When extending these conversion rates to all countries, the 
potential number of outputs of a field based on the total innovation outputs of a country in 
any dimension, for any given ecosystem, can be written as:   

𝑃𝑂𝑇𝑖𝑚,𝑐,𝑡
𝐷𝑛 = 𝐸 (𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚,𝑐

𝐷𝑚 |𝑂𝑢𝑡𝑝𝑢𝑡𝑐
𝐷𝑛) =  Г𝑖𝑚

𝐷𝑛→𝐷𝑚 ∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑗𝑛,𝑐𝑂𝑖𝑚𝑗𝑛
∗

𝑗𝑛
,   ∀𝑐ϵ⁡𝐶   (10) 

Finally, we use the innovation potential indicator to build two other indicators, expressed as 
the difference between the potential outputs and the actual outputs of a country in any field 
of innovation based on its outputs on any other field. When the difference is positive, we name 
the indicator untapped potential. When its negative, we call it over-realized potential. 
Formally: 

𝑈𝑇𝑃𝑖𝑚,𝑐,𝑡
𝐷𝑛 = 𝑃𝑂𝑇𝑖𝑚,𝑐,𝑡

𝐷𝑛 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚,𝑐,𝑡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡𝑃𝑂𝑇𝑖𝑚,𝑐,𝑡
𝐷𝑛 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚,𝑐,𝑡⁡ > 0,⁡⁡⁡𝑒𝑙𝑠𝑒⁡⁡⁡0  (11) 

𝑂𝑅𝑃𝑖𝑚,𝑐,𝑡
𝐷𝑛 = 𝑃𝑂𝑇𝑖𝑚,𝑐,𝑡

𝐷𝑛 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚,𝑐,𝑡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡𝑃𝑂𝑇𝑖𝑚,𝑐,𝑡
𝐷𝑛 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑚,𝑐,𝑡⁡ < 0,⁡⁡⁡𝑒𝑙𝑠𝑒⁡⁡⁡0  (12) 

These measures leverage the interconnections across scientific, technological, and productive 
domains to estimate where a country has untapped opportunities—or where it may be 
exceeding expectations. A positive potential value suggests that a country has the capabilities 
to expand into a field but has not yet fully realized them (untapped potential), while a negative 
value indicates that the country is overperforming relative to expectations (over-realized 
potential). 

With this, we establish a systematic approach to identifying both underutilized and 
exceptionally strong innovation capabilities. 

The following section presents the results of this analysis and illustrates how different 
countries position themselves within the innovation landscape. 
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4 Results 
We examine the relevance and validity of the technological potential indicator by testing three 
hypotheses related to the relationship between scientific, production-based, and 
technological outputs. These hypotheses are designed to explore how innovation capabilities 
in scientific and production dimensions affect technological achievements, how complexity 
influences these outcomes, and whether more complex ecosystems can better fulfill their 
technological potential. 

Table 1. Panel regression results for technological output growth, using potentials based on 
science, technology, and production. 

 Δ t patents c,f 
Model (1) (2) (3) (4) (5) 

patents c, ft-1  
-2.630 *** -2.649 *** -2.650 *** -2.688 *** -2.575*** 

(0.011) (0.011) (0.011) (0.011) (0.013) 

𝛽1 : potential c,f,t-1  
 0.126 *** 0.137 *** 0.110 ***  

 (0.006) (0.006) (0.007)  

potential c,f,t-1 x from prod. 
  -0.015 *** -0.013 *** -0.013 *** 

  (0.003) (0.003) (0.003) 

potential c,f,t-1 x from science 
  -0.010 *** -0.008 *** -0.008 *** 

  (0.003) (0.003) (0.003) 

relatedness density c,f,t-1
 

   0.608 *** 0.607 *** 

   (0.014) (0.014) 

𝛽1a  : untapped potential c,f.t-1
 

    0.104 *** 

    (0.009) 

𝛽1b  : over-realized potential c,f,t-1
 

    -0.120 *** 

    (0.012) 

time FE / country-field FE yes / yes yes / yes yes / yes yes / yes yes / yes 

observations 225’848 225’848 225’848 225’848 225’848 

R2
 0.479 0.481 0. 481 0.485 0.485 

Before testing the first hypothesis, we run a baseline regression OLS model (model 1 in Table 
1) where the only independent variable is the lagged logarithm outputs.  

The regression results indicate that the coefficient on lagged “log” outputs is significantly 
negative. This negative relationship reflects diminishing returns to technological output or 
convergence effects, where countries with initially high output levels experience slower 
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growth, while those starting from lower levels catch up. In addition, a significant negative 
coefficient is a strong indication of a stationary series, thus avoiding unit root issues6.  

Our first hypothesis suggests that higher scientific and production-based potential leads to 
improved technological outcomes. To test this, we employed a series of regressions (2 to 4 in 
Table 1) examining the relationship between scientific and production outputs and 
technological outcomes, controlling for other variables, such as the relatedness density. 

Results show that the potential indicator is a significant contributor to technological output 
growth. However, its impact is lower when using the predictions that do not come from other 
technological outputs (variables in rows 3 and 4).  

Additionally, the indicator remains significant and with a similar coefficient even when adding 
other predictors of entry and output growth such as the relatedness density indicator. 
Relatedness shows a much larger impact (5 times larger), but the potential indicator effect is 
still informative and does not get absorbed by it.  

These results are consistent across innovation ecosystems, whether they belong to the 
frontier or not (see Annex B). However, the effect of the potential indicator is halved for non-
frontier ecosystems and is compensated by a higher importance of the relatedness density 
indicator. 

Model 5 aims to answer the second hypothesis. By splitting the potential between the 
observations that have untapped potential and over-realized potential, the potential indicator 
shows how untapped potential tends to affect positively the future outputs, while having an 
over realized potential has the opposite effect. 

Table 2. Panel regression results for technological output growth, and its relation to 
complexity indicators. 

 Δ t patents c,f
 

Model (6) (7) (8) (9) 

patents c,f,t-1  
-2.688 *** -2.584 *** -2.697 *** -2.567 *** 

(0.011) (0.013) (0.011) (0.013) 
𝛽1  : potential c,f,t-1  

-0.011  -0.662 ***  
(0.015)  (0.043)  

𝛽1a : untapped potential c,f,t-1  
 -0.017  -0.195 ***  (0.048)  (0.062) 

𝛽1b : over-realized potential c,f,t-1  
 0.155 **  -0.723 ***  (0.064)  (0.086) 

 
6 Unit root tests, such as the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP), typically require a larger 
number of time periods to produce reliable results. With only five time periods available, these tests lack sufficient 
power, increasing the risk of incorrect inferences (e.g., failing to detect non-stationarity). As a result, alternative 
diagnostic methods—such as examining autoregressive coefficients or model residuals—were considered more 
appropriate for assessing stationarity in this context. 
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relatedness density c,f,t-1
 

0.631 *** 0.621 *** 0.522 *** 0.595 *** 
(0.014) (0.014) (0.015) (0.014) 

capability complexity c.t-1
 

0.268 *** 0.286 ***   

(0.024) (0.028)   

𝛽2 : pot c,f,t-1 x cap complexity c.t-1
 

0.161 ***    

(0.020)    

𝛽2a : cap complexity c.t-1 x ut pot c,f,t-1
 
 0.158 **   

 (0.068)   

𝛽2b : cap complexity c.t-1 x or pot c,f,t-1
 
 -0.388 ***   

 (0.091)   

ecosystem complexity c.t-1
 

  0.871 *** -0.025   (0.062) (0.045) 
𝛽3 : pot c,f,t-1 x eco complexity c.t-1

 
  0.993 ***  
  (0.055)  

𝛽3a : eco comp c.t-1 x ut pot.c,f,t-1
 

   0.382 ***    (0.082) 
𝛽3b : eco comp c.t-1 x or pot.c,f,t-1 

   0.784 ***    (0.106) 
time FE / country-field FE yes / yes yes / yes yes / yes yes / yes 

observations 2258 8 2258 8 2258 8 2258 8 
R2

 0.486 0. 486 0.487 0.486 

The third hypothesis suggests that potential in more complex technological outputs is more 
difficult to achieve. Using the complexity of technological outputs as a measure, we 
performed regressions (6 and 7 in Table 2) to determine if higher capability complexity affects 
the effect of the potential indicator. 

The results of these experiments do not support this hypothesis. The effects of capability 
complexity over the potential indicator is unchanged from the previous models. It remains 
positive both for the indicator and for the interaction with capability complexity in model 6, 
indicating that the overall effect of potential stays positive. In addition, the capability 
complexity indicator has a positive coefficient, indicating that as complexity of capabilities is 
higher, so does output growth. This stands also for model 7, but only where potential is 
untapped, as when there is overachieved potential, the overall effect is negative.  

The final hypothesis examines whether more complex ecosystems are better at fulfilling their 
technological potential. Using the complexity of innovation ecosystems as a measure, we 
performed regressions (8 and 9 in Table 2) to determine if higher ecosystem complexity 
affects the effect of the potential indicator. 

Results from regressions 8 and 9 support the hypothesis. Model 8 shows that, despite the 
change in sign on the potential indicator (from positive to negative), the overall effect of 
potential is reverted for ecosystems on higher complexity levels. Model 9 extends this by 
slicing the data between untapped and over-realized potentials and shows that for those 
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ecosystems that have untapped potential, the indicator has a positive effect on output growth 
for more ecosystems, while for those that are over-realizing it, the effect is negative for most.  

Figure 5 shows the effect of complexity for these three cases, with a 95% confidence interval. 
When potential is not discriminated against untapped and over-realized, ecosystems with 
complexities above 0.597 have a positive effect on their potential. This involves virtually all 
developed ecosystems and most developing economies (130 of 139). The exception are some 
African countries (Burkina Faso, Benin, Gabon, The Gambia, Guinea, Madagascar, Mali and 
Niger) plus Afghanistan. The list of exceptions gets small when considering only untapped 
potential (Gabon, Gambia, Guinea, Madagascar, Mali and Niger). For those ecosystems that 
are over-realizing it, the threshold is much higher, as only nine ecosystems (Austria, Finland, 
Israel, Japan, Republic of Korea, Singapore, Sweden, Switzerland and the United Kingdom) 
meet the requirement for a small positive effect, although statistically unsignificant. 

Figure 5. Impact of Ecosystem complexity on technological potential  

 

In summary, the results confirm the relevance and explanatory power of the technological 
potential indicator in capturing the dynamics of innovation across countries and sectors. The 
patterns observed underscore how differences in capability complementarities and 
ecosystem complexity shape innovation outcomes. Countries that effectively mobilize their 
scientific and productive strengths tend to realize or exceed their technological potential, 
while others leave significant opportunities untapped. These findings set the stage for the 
following discussion, where we interpret these results in greater depth and explore their 
implications for policymakers, practitioners, and future research. We also outline potential 
applications of the indicator for identifying strategic priorities and guiding innovation policy. 

 

5 Discussion 
This section interprets the key findings presented in the results, highlighting their 
implications for understanding innovation dynamics across countries and dimensions. By 
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examining the role of technological potential our analysis sheds light on how ecosystems 
leverage their scientific and productive capabilities to drive technological advancement. We 
discuss how the strength of relatedness between different fields of innovation, as well as 
ecosystem complexity, influence a country’s ability to fulfill or exceed its potential. Finally, we 
explore how these insights can inform strategic decision-making and policy interventions 
aimed at fostering more effective innovation ecosystems. 

5.1 The interconnectedness of capabilities 
The increasing interdependence of innovation fields observed over time can be attributed to 
several factors that influence the evolution of well-functioning national ecosystems. As the 
results show, both the number of significant connections and the number of connected nodes 
has grown significantly across the 20 years analyzed. This growing interdependence is 
reflective of several dynamics that shape innovation ecosystems. 

First, as global challenges become more complex, solutions often require the integration of 
capabilities across various domains—science, technology, and production. The increasing 
number of connections indicates that these capabilities are no longer isolated but rather work 
in tandem to drive innovation. Over time, the boundary between what constitutes 'scientific,' 
'technological,' or 'productive' fields becomes more fluid, as more innovations span multiple 
dimensions. This convergence is reflected in the greater number of cross-dimensional 
connections observed in the results, particularly between production and technology, which 
together form the strongest linkages across ecosystems. 

Second, the growth in connections highlights the role of multidisciplinary approaches in 
modern innovation. Fields that were previously separate, such as those in science and 
technology, now collaborate more often, facilitating a more integrated and efficient 
innovation process. As ecosystems mature, their innovation capabilities are increasingly 
interconnected, fostering the sharing of knowledge and resources across domains. 
Consequently, the increasing interdependence seen in the data suggests that leading 
ecosystems are creating networks of innovation that leverage complementary capabilities 
across dimensions, driving enhanced productivity and technological advancement. 

In essence, this evolution points to the growing complexity and synergy within innovation 
ecosystems, where capabilities are increasingly interdependent, enabling a more efficient 
and expansive ecosystem of innovation. 

5.2 Global patterns of innovation potential 
This subsection explores the global distribution and patterns of innovation potential across 
countries and sectors, as measured by our indicator. By examining both national and sectoral 
cases, we highlight how different innovation ecosystems convert their scientific and 
productive capabilities into technological outputs. The analysis uncovers varying degrees of 
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untapped and overachieved potential, illustrating how countries at different stages of 
development and specialization leverage their existing capabilities. We present key examples 
that demonstrate how the technological potential indicator captures meaningful differences 
in innovation trajectories and strategic positioning across the globe. 

Figure 6. Technological outputs and potential of Canada by domain, 2017-2020  

 

Figure 6 shows the Canadian technological outputs (expressed in bars) alongside its potential 
(circles) based on its respective scientific publications, exports in goods and services, and 
patents. As many other medium-sized high-income ecosystems, Canada has untapped 
potential in many sectors.  

For example, given its scientific production, Canada produces half as many patents in 
audiovisual technologies and two-thirds as many in chemical technologies compared to the 
average frontier economy. In other sectors, with the same scientific output, Canada produces 
16 percent more patents in civil engineering technologies than the average well-functioning 
national innovation ecosystem. 

This insight can be powerful when it comes to identifying missing links between the 
stakeholders in an innovation ecosystem. By looking into how these dimensions interact in a 
well-functioning ecosystem policymakers can prioritize between domains and zoom into the 
relations between academic institutions, industry and the IP system, to identify the particular 
constraints that are stopping the economy from reaching its full potential. 
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Figure 7. Technological outputs and potential of Colombia by domain, 2017-2020  

 

Both countries have domains where, based on their scientific outputs, there is untapped 
technological potential. For Canada, there is room for improvement in three of the most 
complex domains – audiovisual, electronics, and semiconductors and optics. The average 
well-functioning national innovation ecosystem would produce more patents if it had the 
same scientific outputs as Canada. For example, given its scientific production, Canada 
produces half as many patents in audiovisual technologies and two-thirds as many in 
chemical technologies compared to the average cluster 1 economy. In contrast, with the same 
scientific output, Canada produces 16 percent more patents in civil engineering technologies 
than the average well-functioning national innovation ecosystem. 

This insight can be powerful when it comes to identifying missing links between the 
stakeholders in an innovation ecosystem. By looking into how these dimensions interact in a 
well-functioning ecosystem policymakers can prioritize between domains and zoom into the 
relations between academic institutions, industry and the IP system, to identify the 
constraints that are stopping the economy from reaching its full potential. For less diversified 
economies such as Colombia technological capabilities are less present at the international 
scale, and its observed patents are far from reaching their potential. Indeed, Colombia’s 
transformation of scientific publications into international patents is in all fields less than 50 
percent of that of the average cluster 1 economy. This is particularly relevant for biopharma 
and ICTs where Colombia produces a considerable related scientific output but realizes no 
more than 18 percent and six percent, respectively, of the technological transformation 
potential.  
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Figure 8. Technological outputs and potential in engineering and technology by sub-
continent, 2017-2020  

 

Figure 8 presents the distribution of actual outputs and untapped potential across global 
regions within the engineering and technology sector. The results highlight significant 
untapped potential in South Central Asia, Southeastern Asia, and Eastern Europe, where 
expected technological outputs, based on scientific and productive capabilities, exceed 
current performance levels. This suggests that these regions possess the underlying capacity 
to generate more technological outputs but are not yet fully translating their capabilities into 
tangible technological outputs. 

For the private sector and industry stakeholders, this analysis highlights promising regions 
for investment and collaboration. Companies seeking to expand their R&D footprint or 
establish partnerships can view these areas as underutilized innovation ecosystems with 
strong underlying capabilities. By entering these markets early—through joint ventures, 
research partnerships, or technology licensing agreements—firms can tap into a wealth of 
scientific knowledge and production expertise that has not yet been fully leveraged. Moreover, 
identifying regions with high untapped potential allows businesses to anticipate emerging 
hubs of technological innovation, positioning themselves ahead of competitors in accessing 
new technologies, talent pools, and market opportunities. 

5.3 Implications for developing ecosystems 
This section explores how the findings of the study can inform strategies for developing and 
emerging innovation ecosystems. The insights from the innovation potential indicator, the 
significant connections across fields, and the global patterns of untapped potential offer 
practical lessons for policymakers, industry leaders, and ecosystem stakeholders in these 
contexts. 
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1. Recognizing and Leveraging Existing Capabilities Through Complementary Linkages 

Developing innovation ecosystems often underestimate their existing scientific and 
production strengths. The innovation potential indicator highlights where countries already 
have the foundations to expand technological outputs, guiding national strategies toward 
sectors with the greatest opportunity rather than diluting efforts across too many fields. 
However, realizing this potential depends on building strong complementarities between 
science, technology, and production. Encouraging public-private partnerships, innovation 
hubs, and joint R&D initiatives can foster these cross-sectoral linkages. By bringing together 
academia, industry, and government, these collaborative platforms accelerate knowledge 
exchange, bridge institutional gaps, and help translate scientific and technological 
capabilities into productive outcomes. This integrated approach is especially critical for 
developing countries aiming to strengthen their innovation systems and move towards more 
complex, high-value activities. 

2. Focusing on Complexity and Coordination 

The study shows that ecosystems with higher complexity and better coordination are more 
successful in fulfilling their potential. Developing ecosystems should focus not only on 
increasing output volume but also on diversifying and upgrading their technological 
capabilities. 

An important actionable insight is the need to invest in capability-building programs that 
strengthen the skills base and infrastructure of local industries. Such investments are critical 
for enabling firms and sectors in developing ecosystems to move into more complex and 
high-value technological activities. Building human capital through targeted education and 
training programs ensures a workforce capable of engaging with advanced technologies, 
while upgrading infrastructure—such as research facilities, digital connectivity, and 
manufacturing capabilities—provides the necessary foundation for innovation to thrive. 
These efforts not only enhance a country’s ability to develop sophisticated technologies but 
also improve its position in global value chains, fostering long-term economic growth and 
competitiveness. 

3. Attracting Investment and Industry Engagement 

By identifying areas of untapped potential, developing ecosystems can attract foreign direct 
investment (FDI) and multinational corporations interested in tapping into underutilized 
knowledge and production bases. Clear evidence of potential can help make the case for 
investment incentives, technology parks, and incubators. 
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6 Conclusions 
This study sets out to examine whether countries can leverage their existing scientific and 
productive capabilities to expand their technological outputs and close gaps in their 
innovation ecosystems. By developing and applying a Technological Potential Indicator 
grounded in relatedness and complexity metrics, we offer new insights into the global 
dynamics of innovation. Our analysis shows that the indicator successfully predicts 
technological output growth and highlights the significance of capability complementarities 
and ecosystem complexity in determining innovation performance. 

One of the key findings is that while countries with untapped potential tend to experience 
stronger growth in technological outputs, exceeding predicted potential is associated with 
diminishing returns. This suggests that sustainable innovation growth requires balancing 
ambition with the underlying capacity of the ecosystem. Moreover, our results show that 
complex ecosystems—those that combine diverse and sophisticated capabilities—are more 
effective at realizing their technological potential. This reinforces the importance of building 
strong linkages between science, technology, and production sectors. 

For policymakers, these findings offer a practical framework to identify sectors with high 
potential for technological advancement, prioritize investments in complementary 
capabilities, and design policies that foster ecosystem complexity. For industry practitioners, 
the indicator provides actionable insights into where collaborative efforts, capability-building, 
and technology transfer initiatives can deliver the highest impact. The indicator can also serve 
as a tool for targeting public-private partnerships and guiding foreign direct investment 
toward underutilized innovation opportunities. 

In closing, this research contributes to the understanding of how innovation potential can be 
measured and harnessed to foster balanced and sustainable technological development. 
Future work can extend this framework by integrating firm-level data or exploring case 
studies that illustrate successful strategies in bridging gaps between potential and 
performance. 

6.1 Limitations 
While this study provides valuable insights into global patterns of innovation potential and 
technological progression, several limitations should be acknowledged. 

First, our analysis focuses exclusively on internationally visible innovation outputs, including 
exports, scientific publications, and international patent families. While these indicators 
provide a robust basis for cross-country comparisons and help avoid domestic biases, they 
do not capture the full extent of innovation activities occurring within national borders. As a 
result, important domestic innovations, informal technological developments, and regionally 
significant outputs that are not internationally registered may be overlooked. This limitation 
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is particularly relevant for developing ecosystems, where innovation can take forms that are 
less visible in global datasets but are nonetheless critical for local development. 

Second, the study concentrates on specific types of innovation outputs, primarily those 
associated with formal scientific and technological activities. This approach excludes other 
important forms of innovation, such as social innovations, grassroots technological 
adaptations, and process improvements that may not lead to patents or international exports 
but significantly impact societal and economic progress. Consequently, the Technological 
Potential Indicator does not capture the full diversity of innovation processes and outcomes. 

Finally, while the use of relatedness and complexity metrics allows us to map innovation 
capabilities across countries and sectors, these methods rely on the quality and availability of 
existing data. Data limitations may influence the accuracy of complexity measures and the 
identification of capability complementarities, especially in countries with less comprehensive 
reporting systems. 

Addressing these limitations in future research—by incorporating domestic innovation data, 
expanding the range of innovation outputs considered, and improving data coverage—could 
provide a more comprehensive understanding of innovation potential and its drivers. 

6.2 Further research  
Building on the findings of this study, several avenues for further research could enhance the 
methodology and broaden the scope of analysis. 

First, future work could extend the analysis to the subnational level, examining regional 
innovation ecosystems within countries. Many important innovation dynamics occur at the 
local or regional scale and analyzing these patterns could reveal hidden capabilities and 
potential that national-level data may obscure. A subnational approach would also allow for 
more tailored policy recommendations and a deeper understanding of territorial innovation 
strategies. 

Second, methodological improvements can help test the robustness of the Technological 
Potential Indicator. One avenue is to explore different lag structures in the regression models, 
which would allow for a better understanding of the time horizons over which scientific and 
production capabilities translate into technological outcomes. Varying the lags could help 
determine whether different sectors or regions require more time to realize their innovation 
potential. 

Third, expanding the range of innovation outputs could provide a more comprehensive 
picture of technological development. Incorporating trademark data as an additional 
dimension of innovation would complement the existing indicators of exports, scientific 
publications, and patents. Trademarks capture aspects of innovation related to branding, 
commercialization, and market differentiation—elements that are especially relevant in 
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sectors like consumer goods and services, which may not be fully reflected in scientific or 
patent activity. 

Finally, future studies could explore alternative complexity and relatedness measures or 
employ dynamic panel data models to further validate and refine the conclusions presented 
here. These extensions would strengthen the reliability and policy relevance of the 
Technological Potential Indicator as a tool for strategic decision-making in innovation policy.  
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Annexes 

A. Correlation matrix of main variables 

  
Outputs 
Change 
ASINH 

Potential 
LAG1 ASINH 

Relatedness 
LAG1 

Capability 
Complexity 

LAG1 

Ecosystem 
Complexity 

LAG1 

Untapped 
Potential 

LAG1 ASINH 

Over-realized 
Potential 

LAG1 ASINH 

Outputs 
Change 
ASINH 

1.000 -0.016 0.000 0.018 0.013 0.259 -0.300 

Potential 
LAG1 ASINH -0.016 1.000 0.739 0.183 0.610 0.293 0.007 

Relatedness 
LAG1 0.000 0.739 1.000 -0.031 0.626 -0.058 0.066 

Capability 
Complexity 

LAG1 
0.018 0.183 -0.031 1.000 -0.003 0.141 0.039 

Ecosystem 
Complexity 

LAG1 
0.013 0.610 0.626 -0.003 1.000 0.093 0.078 

Untapped 
Potential 

LAG1 ASINH 
0.259 0.293 -0.058 0.141 0.093 1.000 -0.221 

Over-realized 
Potential 

LAG1 ASINH 
-0.300 0.007 0.066 0.039 0.078 -0.221 1.000 
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B. Regression results for high-performing vs non-high performing 
ecosystems 

 Δ t patents c,f 

Model (frontier) (non frontier) 

patents c,f,t 1  
-2.214 *** -2.802 *** 

(0.023) (0.012) 

𝛽1: potential c,f,t 1  
0.254 *** 0.069 *** 

(0.012) (0.008) 

potential c,f,t 1 x from production 
-0.011 *** -0.019 *** 

(0.003) (0.005) 

potential c,f,t 1 x from science 
-0.014 *** -0.010 * 

(0.003) (0.006) 

rd c,f,t 1 
0.31 *** 0.759 *** 
(0.014) (0.041) 

time FE / country field FE yes / yes yes / yes 

observations 52’192 17 ’656 

R2
 0.382 0.506 
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