Patents and Innovation for Growth in a Converging World Economy

Intellectual Property Strategy and Technology Commercialization

Prof. Dr. Ove Granstrand
Dept. of Technology Management and Economics
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Tel: +46 (0)31-772 1209
ovegra@chalmers.se

Presentation at the World Intellectual Property Organisation WIPO,
Geneva, Sept. 5, 2011,
In the WIPO Seminar Series on “The Economics of Intellectual Property”
Reference material

Outline

- Patents and Innovations for Growth - Macro Level Background
- Patents and Innovations for Growth - Micro Level
- Strategy ladder
- Do patents help commercialization?
- Do patents hinder commercialization?
- Do IPR impede the market for corporate control?
- Do patents impede standard setting?
Patents and Innovations for Growth
Macro Level Background
Technological/R&D changes

1. Emergence of new technological systems (families of interrelated technologies), in particular ICTs, biohealth technologies (BHTs) and material and energy technologies.

2. Continued build-up of in-house R&D and various forms of corporate innovation systems in industry, now controlling most of worldwide technology and an increasing share of worldwide science.

3. Increasing specialization and division of R&D labour, use of technology markets and external technology acquisition.

4. Increasing technology diversification of products and processes, leading to increasing interdependencies among technologies, companies, products and processes.

5. A continued transition from individually based research and invention (for which IPR laws originally and still cater) to intra-company team-based and further to inter-company team-based, i.e. to inter-organisational R&D collaboration. Scale, critical mass, scope, interdisciplinarity, and speed to market will make collaborations and networking an increasingly appealing governance mode over purely market-mediated coordination.

6. Internationalisation, globalisation and “glocalisation” of R&D and technology acquisition (i.e. global coordination of firm R&D with increasing concentration in certain technology-intensive regions around the world).

7. Technological changes in the production and distribution of new technologies. Emergence of what can be called “e-Research” in intra- and inter-firm R&D through use of various infocom technologies as research tools (Internet, multimedia conferencing, networked databases, artificial intelligence tools, distributed computing, data grids, large-scale simulations etc.).
Economic changes

1. Economic rise of Japan and Asian NICs in the 1980s and disintegration of the Soviet Union political empire and economic system in the 1990s, changes which in large part were innovation- and technology-related.

2. Gradual emergence of a new type of economy (more knowledge- and innovation-based, ICT-driven, IP-oriented, etc.) with more use of technology and information markets, firms and products.

3. Military R&D, still amounting to roughly half of the world’s R&D, is shifting in character, including increase of IP relevance.

4. Increasing importance of dynamic innovation-based competition across nations, sectors, companies and markets (including markets for labour, knowledge/ideas and financial services).

5. Increasing gaps of technology and competitiveness between the USA and Europe, including the defence sector.

6. Perceived underinvestment in R&D in Europe has prompted the European Commission to adopt the goal that overall spending on R&D and innovation in the EU should be increased with the aim of approaching 3% of GDP by 2010.

7. Universities and public research organisations are becoming more economically focused, i.e. becoming more industrialised, commercial, competitive, international, alliance-prone, strategic, and IP-conscious.
IP legal changes

1. Increasing strengthening, widening, awareness, use and enforcement of the various IP systems around the world, with growth on average of patents, patent portfolios, IP values, IP disputes, damages etc.

2. Increasing interaction between IP policies and other economic policies, especially trade policies through TRIPs and the WTO.

3. Extension of patentable and IP-protectable subject matter and IPR types (e.g. database rights).

4. Increasing international harmonisation of IP laws and practices.

5. Increasing strategic role and use of IPRs in various industries.

6. Increasing protests against the IP system and disputes within the IP system, with increasing litigation costs.

7. Increasing interaction between various IPR types and between IP laws and other areas of law, especially contract law, trade law and competition law.
Some Convergence Trends in a Converging World Economy

M Managerial
E Economical
L Legal
T Technological
Solving Challenges in a Converging World Economy

- Volatility \(\uparrow \)
- Diversity \(\downarrow \)
- Risks \(\uparrow \)
- Financial crises \(\uparrow \)

How to organize the world’s growing IP?
Intellectual Capitalism requires a.o.

1. Well defined property rights
 • Physical (PPRs)
 • Intellectual (IPRs)

2. Well functioning markets for
 • products/services
 • technologies
 • shares in companies/ventures

NB: No property rights – No trade
Economic Theories of the Patent System

<table>
<thead>
<tr>
<th>Received economic theories</th>
<th>Newer economic perspectives on patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentive-to-Invent theory</td>
<td>Patents as a joint incentive to innovate and diffuse</td>
</tr>
<tr>
<td>Focus: Impact on invention and R&D</td>
<td>Focus: Impact on dynamic competition through “continuous” and entangled (interdependent) innovation and diffusion processes</td>
</tr>
<tr>
<td>Concerns:</td>
<td>Concerns:</td>
</tr>
<tr>
<td>• Distortion of R&D (e.g. too much substitutes/too little complements, too little basic/too much applied, too much patentable/too little unpatentable)</td>
<td>• As for incentive-to-innovate</td>
</tr>
<tr>
<td>• Barriers to competition</td>
<td>• Efficiency/distortion of diffusion</td>
</tr>
<tr>
<td>• Heterogeneity of industries/firms/inventors</td>
<td>• Interdependence of inventions and innovations over time (e.g. in sequential innovation)</td>
</tr>
<tr>
<td></td>
<td>• Dynamic interaction between innovation and diffusion processes</td>
</tr>
<tr>
<td>Incentive-to-Disclose theory</td>
<td>Patent rights and patent information as a governance mechanism</td>
</tr>
<tr>
<td>Focus: Impact on secrecy</td>
<td>Focus: Property rights allocation and disclosure as a mode of incentivizing and organizing for decentralized governance through management hierarchies and markets and hybrids of these two governance modes.</td>
</tr>
<tr>
<td>Concerns:</td>
<td>Concerns:</td>
</tr>
<tr>
<td>• Quality/quantity of disclosure</td>
<td>• Allocation and transfer of rights</td>
</tr>
<tr>
<td>• Impact on R&D (e.g. stimulation, coordination)</td>
<td>• Cumulation and dispersion of rights</td>
</tr>
<tr>
<td>• Impact on diffusion (e.g. on technology markets)</td>
<td>• Interdependence of rights</td>
</tr>
<tr>
<td>Incentive-to-Innovate theory</td>
<td>• Scope and duration of rights</td>
</tr>
<tr>
<td>Focus: Impact on innovation and competition</td>
<td>• Enforcement of rights</td>
</tr>
<tr>
<td>Concerns:</td>
<td>• Governance efficiencies, e.g. in terms of coordination and communication costs, e.g. market efficiencies, e.g. in terms of transaction costs</td>
</tr>
<tr>
<td>• Incentives ex ante and ex post invention</td>
<td>• Optimal decentralized “tariffs” or “taxation” (through prices or damages)</td>
</tr>
<tr>
<td>• Impact on complementary investments</td>
<td>• Role of governance bodies and institutions (legislators, courts, patent offices, patent management, patent pools, clearing houses, anti-trust authorities etc.)</td>
</tr>
<tr>
<td>• Transaction costs</td>
<td>• Alternative governance mechanisms</td>
</tr>
<tr>
<td>• Invention/innovation distinction</td>
<td></td>
</tr>
<tr>
<td>• Patent scope and duration</td>
<td></td>
</tr>
<tr>
<td>Prospect theory</td>
<td></td>
</tr>
<tr>
<td>Focus: Resource exploitation efficiency</td>
<td></td>
</tr>
<tr>
<td>Concerns:</td>
<td></td>
</tr>
<tr>
<td>• Coordination and duplication of R&D</td>
<td></td>
</tr>
<tr>
<td>• Exploration</td>
<td></td>
</tr>
<tr>
<td>• Improvement</td>
<td></td>
</tr>
<tr>
<td>• Firm strategies</td>
<td></td>
</tr>
</tbody>
</table>
Thus: A Pro-IP era must be accompanied by A Pro-licensing era
License types:

Rights of x kept ("Self-license")

Exclusive (only buyer gets right)

Sole (seller keeps right as well)

Simple (non-exclusive)

Sub-license (exclusive)

Grant-back license

Block/packet license

Blanket license

Cross-license

Collaboration types (illustrative):

Bilateral cross-licensing of background knowledge and co-owned foreground knowledge

Multilateral patent pool (3 party) (everyone shares knowledge except their sideground knowledge)

Legend:

x, y, z agent x, y, z possessed technologies (technology pieces)
x, t=0,1,2 back-, fore-, postground knowledge/technology
x+ improvement of x
-x sideground knowledge (agents’ knowledge apart from x)
x_{ij} different sub-technology (pieces) i of agent x at time t
x? yet unknown technology (developed in future)
xy jointly developed and co-owned
Patents and Innovations for Growth
Micro Level
Fundamental relations between patenting and economic growth

The IP-Growth Spiral –
– Start-up knowledge…
The IP-Growth Spiral

...creates IP and is fed by resources...
The IP-Growth Spiral

...fostering and fostered by innovations...
The IP-Growth Spiral

...fostering economic growth and welfare and fostered by patents and IP...
The IP-Growth Spiral

...feeding into more R&D and knowledge...
The IP-Growth Spiral

...etc., leading to...
The IP-Growth Spiral

...a case of positive feedback
In other words

Patents and Innovations for Growth and Welfare
Assessments of the elasticities of different variable connections in the patent/growth spiral

<table>
<thead>
<tr>
<th>Question</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5.1.1a Assume that your company or group of companies increases its R&D investments by 10 %.</td>
<td></td>
</tr>
<tr>
<td>1. Approximately how much, if at all, would then the number of patented inventions increase?</td>
<td>7.6 %</td>
</tr>
<tr>
<td>2. Approximately how much, if at all, would then the sales increase?</td>
<td>5.5 %</td>
</tr>
<tr>
<td>Q5.1.1b Assume that your company’s or company group’s sales were to increase by 10 %. Approximately how much would then the R&D investments increase?</td>
<td>8.3 %</td>
</tr>
<tr>
<td>Q5.1.1c Assume that your company or group of companies increases its total patent resources by 10 %.</td>
<td></td>
</tr>
<tr>
<td>1. Approximately how much, if at all, would then the number of patented inventions increase?</td>
<td>5.4 %</td>
</tr>
<tr>
<td>2. Approximately how much, if at all, would then the sales increase?</td>
<td>2.6 %</td>
</tr>
<tr>
<td>3. Approximately how much, if at all, would then the R&D investments increase?</td>
<td>2.5 %</td>
</tr>
</tbody>
</table>
The influence of the patent system on company R&D, new products, and growth

<table>
<thead>
<tr>
<th>Question</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3.3.4a Estimate how large a proportion of the new products introduced during the last five years (2000–2004) would not have been developed and introduced on the market if it had been foreseen that for them patents could not be granted:</td>
<td>31.5 %</td>
</tr>
<tr>
<td>Q3.3.4b Give the proportion (in percent) of inventions developed during the last five years which would not have been developed if they could not be protected by patents:</td>
<td>30.3 %</td>
</tr>
<tr>
<td>Q5.1.6 If your company’s patent protection for a typical new product on the market were to cease for some reason, how much would this:</td>
<td></td>
</tr>
<tr>
<td>a) reduce the product’s sales, in approximate %?</td>
<td>25.1 %</td>
</tr>
<tr>
<td>b) reduce the product’s sales margin (profitability margin before write-offs), in approximate % (of the percentage sales margin)?</td>
<td>24.2 %</td>
</tr>
<tr>
<td>c) reduce the product’s market lifetime, in approximate %?</td>
<td>25.0 %</td>
</tr>
<tr>
<td>Q5.4.1 Assume that the maximum patent protection time is changed in all of the important markets where your company or group of companies operates. What would be the effect on your company’s or company group’s total R&D budget if the maximum patent protection time were changed as suggested below? (Try to make a rough estimate.)</td>
<td></td>
</tr>
<tr>
<td>a) increased by 3 years</td>
<td>2.0 %</td>
</tr>
<tr>
<td>b) reduced to 10 years</td>
<td>-16.3 %</td>
</tr>
<tr>
<td>c) reduced to 0 years (i.e. the patent protection ceases entirely)</td>
<td>-37.2 %</td>
</tr>
</tbody>
</table>
Strategy ladder
Corporate strategies for resources and businesses
In terms of profit, growth, specialization, diversification, internationalization, integration, capital structure, etc.

Innovation/imitation strategies
In terms of product/development/competitive/resource positions directions, timing, profiles, quality, cost, resource acquisition, exploitation etc.

Technology acquisition (sourcing) strategies
Internal R&D
Acquisition of innovative projects or firms (units)
Joint technology ventures (with users, suppliers, universities, competitors, etc.)
Technology purchasing (contract R&D, licensing in, etc.)
Technology scanning

Technology exploitation strategies
Internal exploitation of new products/processes
Spin-off of innovative firms and units
Joint ventures
Technology selling (services, licensing out, etc.)
Divestment

Product commercialization strategies (Internal exploitation)
Patenting
Secrecy
Market lead times
Superior production (using learning curves etc.)
Superior marketing (branding etc.)
Creating switching costs

IP strategies
For patents, trade secrets, trade names, designs, copyrights, databases, software, know-how, licenses etc.
Multi-protection of business systems.

Competitive outcome and economic performance, foresighting and signalling

(Example)
Corporate strategies for resources and businesses
In terms of profit, growth, specialization, diversification, internationalization, integration, capital structure, etc.

Innovation/imitation strategies
In terms of product-market/competitive/resource positions, directions, timing, profiles, quality, cost, resource acquisition, exploitation etc.

Technology acquisition (sourcing) strategies
Internal R&D
Acquisition of innovative projects or firms (units)
Joint technology ventures (with users, suppliers, universities, competitors, etc.)
Technology purchasing (contract R&D, licensing in, etc.)
Technology scanning

Technology exploitation strategies
Internal exploitation of new products/processes
Spin-off of innovative firms and units
Joint ventures
Technology selling (services, licensing out, etc.)
Divestment

Product commercialization strategies (Internal exploitation)
Patenting
Secrecy
Market lead times
Superior production (using learning curves etc.)
Superior marketing (branding etc.)
Creating switching costs

IP strategies
For patents, trade secrets, trade names, designs, copyrights, databases, software, know-how, licenses etc.
Multi-protection of business systems.

Competitive outcome and economic performance, foresighting and signalling
Technology Acquisition (Sourcing) Strategies

- Internal R&D (including recruitment and training)
- Acquisition of innovative projects or firms (units)
- Joint technology ventures ¹)
- Technology purchasing (contract R&D, licensing in, etc)
- Technology scanning ²)

Technology Exploitation (Commercialization) Strategies

- Internal exploitation (direct investment in production and/or marketing of products)
- Creation of innovative projects or firms (units)
- Joint ventures ¹)
- Technology selling (performing contract R&D, licensing out etc.)
- Divestment (e.g. through patent auctions)
- Storage, dissemination and leakage ³)

Technology base (Capability of the company = Technological competence asset)
Perceived importance of technology acquisition strategies 1982, 1987 and 1992

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal R&D</td>
<td>3.70</td>
<td>3.60</td>
<td>3.80</td>
<td>3.60</td>
<td>3.79</td>
<td>3.80</td>
<td>3.80</td>
<td>3.40</td>
<td>3.00</td>
<td>3.65</td>
</tr>
<tr>
<td>Acquisition of innovative firms (or business units)</td>
<td>1.70</td>
<td>2.30</td>
<td>1.20</td>
<td>2.00</td>
<td>1.78</td>
<td>2.10</td>
<td>2.40</td>
<td>1.70</td>
<td>2.30</td>
<td>1.04</td>
</tr>
<tr>
<td>Joint venture and other forms of cooperative R&D</td>
<td>1.90</td>
<td>2.70</td>
<td>2.10</td>
<td>2.90</td>
<td>2.67</td>
<td>1.80</td>
<td>2.80</td>
<td>1.70</td>
<td>2.10</td>
<td>2.09</td>
</tr>
<tr>
<td>Contract R&D</td>
<td>1.70</td>
<td>2.30</td>
<td>2.20</td>
<td>2.60</td>
<td>2.00</td>
<td>1.40</td>
<td>2.00</td>
<td>1.70</td>
<td>2.40</td>
<td>2.00</td>
</tr>
<tr>
<td>Licensing in</td>
<td>1.90</td>
<td>2.10</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>1.60</td>
<td>2.10</td>
<td>1.90</td>
<td>2.00</td>
<td>1.14</td>
</tr>
<tr>
<td>Technology scanning</td>
<td>2.70</td>
<td>3.20</td>
<td>2.90</td>
<td>3.30</td>
<td>2.83</td>
<td>2.80</td>
<td>3.20</td>
<td>2.10</td>
<td>2.70</td>
<td>2.30</td>
</tr>
<tr>
<td>TEXT<sup>A</sup></td>
<td>6.34</td>
<td>7.80</td>
<td>7.14</td>
<td>8.26</td>
<td>7.29</td>
<td>6.06</td>
<td>7.68</td>
<td>5.66</td>
<td>7.04</td>
<td>5.46</td>
</tr>
<tr>
<td>Openness<sup>A</sup></td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
<td>0.49</td>
<td>0.47</td>
<td>0.45</td>
<td>0.47</td>
<td>0.45</td>
<td>0.49</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Note:

TEXT^A = (1 * Technology scanning) + (0.8 * Licensing in) + (0.6 * Contract R&D) + (0.4 * Joint venture and other forms of cooperative R&D) + (0.2 * Acquisition of innovative firms) + (0 * Internal R&D)

Openness^A = TEXT^A / ΣPI

(Scale: No importance = 0, 1, 2, 3, 4 = Of major importance)
Perceived importance of technology acquisition strategies in Japanese large corporations 1992

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Chemical (n=4)</th>
<th>Electrical (n=10)</th>
<th>Mechanical (n=5)</th>
<th>Total (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal R&D</td>
<td>3,89</td>
<td>3,70</td>
<td>3,80</td>
<td>3,79</td>
</tr>
<tr>
<td>Acquisition of innovative firms (or business units)</td>
<td>1,88</td>
<td>1,40</td>
<td>2,40</td>
<td>1,78</td>
</tr>
<tr>
<td>Joint venture and other forms of cooperative R&D</td>
<td>2,89</td>
<td>2,40</td>
<td>2,80</td>
<td>2,67</td>
</tr>
<tr>
<td>Contract R&D</td>
<td>2,25</td>
<td>1,70</td>
<td>2,20</td>
<td>2,00</td>
</tr>
<tr>
<td>Licensing in</td>
<td>2,75</td>
<td>1,90</td>
<td>2,40</td>
<td>2,30</td>
</tr>
<tr>
<td>Technology scanning</td>
<td>2,88</td>
<td>2,70</td>
<td>3,00</td>
<td>2,83</td>
</tr>
<tr>
<td>TEXT(^A)</td>
<td>7,96</td>
<td>6,48</td>
<td>7,84</td>
<td>7,29</td>
</tr>
<tr>
<td>Openness(^A)</td>
<td>0,48</td>
<td>0,47</td>
<td>0,47</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Note:

\[\text{TEXT}^A = (1 \times \text{Technology scanning}) + (0,8 \times \text{Licensing in}) + (0,6 \times \text{Contract R&D}) + (0,4 \times \text{Joint venture and other forms of cooperative R&D}) + (0,2 \times \text{Acquisition of innovative firms}) + (0 \times \text{Internal R&D}) \]

\[\text{Openness}^A = \frac{\text{TEXT}^A}{\Sigma PI} \]

(Scale: No importance = 0, 1, 2, 3, 4 = Of major importance)
Perceived importance of technology acquisition strategies in Swedish large corporations 1992

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Chemical (n=8)</th>
<th>Electrical (n=3)</th>
<th>Mechanical (n=12)</th>
<th>Total (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal R&D</td>
<td>3,63</td>
<td>4,00</td>
<td>3,58</td>
<td>3,65</td>
</tr>
<tr>
<td>Acquisition of innovative firms (or business units)</td>
<td>1,13</td>
<td>1,33</td>
<td>0,92</td>
<td>1,04</td>
</tr>
<tr>
<td>Joint venture and other forms of cooperative R&D</td>
<td>2,38</td>
<td>2,33</td>
<td>1,83</td>
<td>2,09</td>
</tr>
<tr>
<td>Contract R&D</td>
<td>1,75</td>
<td>1,67</td>
<td>2,25</td>
<td>2,00</td>
</tr>
<tr>
<td>Licensing in</td>
<td>1,14</td>
<td>1,33</td>
<td>1,08</td>
<td>1,14</td>
</tr>
<tr>
<td>Technology scanning</td>
<td>2,25</td>
<td>2,00</td>
<td>2,42</td>
<td>2,30</td>
</tr>
<tr>
<td>TEXT^A</td>
<td>5,39</td>
<td>5,26</td>
<td>5,55</td>
<td>5,46</td>
</tr>
<tr>
<td>Openness^A</td>
<td>0,44</td>
<td>0,42</td>
<td>0,46</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Note:

TEXTA = (1 * Technology scanning) + (0,8 * Licensing in) + (0,6 * Contract R&D) + (0,4 * Joint venture and other forms of cooperative R&D) + (0,2 * Acquisition of innovative firms) + (0 * Internal R&D)

Openness^A = TEXTA / ΣPI

(Scale: No importance = 0, 1, 2, 3, 4 = Of major importance)
Perceived importance of technology exploitation strategies in large Japanese corporations 1987 and 1992

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Chemical (n=9)</th>
<th>Electrical (n=10)</th>
<th>Mechanical (n=5)</th>
<th>Total (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal exploitation</td>
<td>3.89</td>
<td>3.89</td>
<td>3.47</td>
<td>3.50</td>
</tr>
<tr>
<td>Creation of innovative firms</td>
<td>1.60</td>
<td>2.00</td>
<td>1.92</td>
<td>2.00</td>
</tr>
<tr>
<td>Joint ventures</td>
<td>1.74</td>
<td>2.44</td>
<td>1.88</td>
<td>2.50</td>
</tr>
<tr>
<td>Technology selling</td>
<td>1.52</td>
<td>1.89</td>
<td>1.75</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Note:

\[
\text{TEXT}^A = (0.8 \times \text{Technology selling}) + (0.4 \times \text{Joint ventures}) + (0.2 \times \text{Creation of innovative firms}) + (0 \times \text{Internal exploitation})
\]

\[
\text{Openness}^A = \frac{\text{TEXT}^A}{\sum \text{PI}}
\]

(Scale: No importance = 0, 1, 2, 3, 4 = Of major importance)
Importance of different strategies for exploitation of Sweden’s largest innovations in pharmaceuticals and biotechnology during 1980–2005

<table>
<thead>
<tr>
<th>Strategy</th>
<th>BIO SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=17)</td>
<td></td>
</tr>
<tr>
<td>Internal exploitation (direct investment in products and/or processes based on the innovation)</td>
<td>3.94</td>
</tr>
<tr>
<td>Creation of innovative firms (units, spin-offs)</td>
<td>1.13</td>
</tr>
<tr>
<td>Joint collaborations, e.g. joint ventures</td>
<td>0.88</td>
</tr>
<tr>
<td>Licensing out</td>
<td>0.56</td>
</tr>
<tr>
<td>Technology selling, e.g. contract R&D</td>
<td>0.38</td>
</tr>
<tr>
<td>Divestment</td>
<td>0.50</td>
</tr>
<tr>
<td>TEXT^A</td>
<td>1.72</td>
</tr>
<tr>
<td>Openness^A</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Note:

TEXT^A = (0.8 * Technology selling) + (0.4 * Joint ventures) + (0.2 * Creation of innovative firms) + (0 * Internal exploitation)

Openness^A = TEXT^A / ΣPI

(Scale: Of no importance = 0, 1, 2, 3, 4= of major importance.)
Importance of different strategies for exploitation of Sweden’s largest innovations in pharmaceuticals and biotechnology during 1980–2005

<table>
<thead>
<tr>
<th>Question</th>
<th>Importance (n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What was roughly the relative importance of the following strategies for exploiting the technologies of the innovation?</td>
<td></td>
</tr>
<tr>
<td>a Internal exploitation (direct investment in products and/or processes based on the innovation)</td>
<td>3.94</td>
</tr>
<tr>
<td>b Creation of innovative firms (units, spin-offs)</td>
<td>1.13</td>
</tr>
<tr>
<td>c Joint collaborations, e.g. joint ventures</td>
<td>0.88</td>
</tr>
<tr>
<td>d Licensing out</td>
<td>0.56</td>
</tr>
<tr>
<td>e Technology selling, e.g. contract R&D</td>
<td>0.38</td>
</tr>
<tr>
<td>f Divestment</td>
<td>0.50</td>
</tr>
</tbody>
</table>

(Scale: Of no importance = 0, 1, 2, 3, 4= of major importance.)
Do patents help commercialization?
Corporate strategies for resources and businesses
In terms of profit, growth, specialization, diversification, internationalization, integration, capital structure, etc.

Innovation/imitation strategies
In terms of product/market/competitive/resource positions directions, timing, profiles, quality, cost, resource acquisition, exploitation etc.

Technology acquisition (sourcing) strategies
Internal R&D
Acquisition of innovative projects or firms (units)
Joint technology ventures (with users, suppliers, universities, competitors, etc.)
Technology purchasing (contract R&D, licensing in, etc.)
Technology scanning

Technology exploitation strategies
Internal exploitation of new products/processes
Spin-off of innovative firms and units
Joint ventures
Technology selling (services, licensing out, etc.)
Divestment

Product commercialization strategies (Internal exploitation)
Patenting
Secrecy
Market lead times
Superior production (using learning curves etc.)
Superior marketing (branding etc.)
Creating switching costs

IP strategies
For patents, trade secrets, trade names, designs, copyrights, databases, software, know-how, licenses etc.
Multi-protection of business systems.

Competitive outcome and economic performance, foresighting and signalling
<table>
<thead>
<tr>
<th>Study</th>
<th>Dataset</th>
<th>Main measure</th>
<th>Main findings</th>
</tr>
</thead>
</table>
| Levin et al. (1987) | Survey of 650 individuals representing 130 lines of business in the US | Effectiveness of alternative means of protecting competitive advantages of new or improved products and processes | Effectiveness of different means varies over industries
Patents are more effective than secrecy for new products, but secrecy is more effective for new processes
Sales or service efforts, lead time and learning are most effective
Competitors’ ability to legally “invent around” patents is the most important limitation to the effectiveness of patents |
| Harabi (1995) | Survey of 358 individuals representing 127 lines of business in Switzerland | Effectiveness of alternative means of protecting competitive advantages of new or improved products and processes | Patents are the least effective means of appropriation
Sales or service efforts, lead time and learning are most effective, followed by secrecy
Competitors’ ability to legally “invent around” patents and information disclosure are the most important limitations to the effectiveness of patents |
| Kitching and Blackburn (1998) | Telephone survey of 400 SMEs and subsequent face-to-face interviews with 101 of them | The use of informal and formal means of appropriation | Patents are the least used means of appropriation
Costs related to formal means of appropriation is the main reason behind the low use
SMEs lack resources for litigation in case of infringement |
| Brouwer and Kleinhech (1999) | Survey of 1008 Dutch manufacturing firms | Effectiveness of various mechanisms for protection of innovations against imitators | Time lead on competitors is the most effective mechanisms, followed by keeping qualified people in the firm and secrecy before patents and other formal means
Only 25% of the firms rated patents as very important or crucial for protecting products, and 18% for protecting processes |
| Granstrand (1999) | Survey of 25 Japanese and 20 Swedish firms (covering >50% of Japanese and >80% of Swedish corporate R&D expenditures) | Effectiveness of various means for protecting product technologies against imitation | The different means are rated differently in different countries and industries (in order of effectiveness):
Japan: Patents, cost reductions, lead times, marketing, secrecy, switching costs
Sweden: Marketing, cost reductions, lead times, secrecy, patents, switching costs |
| Cohen et al. (2000) | Survey of 1478 US manufacturing firms | Percentage of innovations effectively protected by various appropriation means | Patents are the least effective means of appropriation
Secrecy has increased in importance since the study by Levin et al. (1987) |
| Arundel (2001) | CIS survey of 2849 European R&D-performing manufacturing firms | Value of secrecy vs. patents | Secrecy is in general rated more valuable than patents for all firm sizes
The probability with which firms rate secrecy over patents decreases with increasing firm size in the case of product innovations |
| Leiponen and Byma (2009) | Survey of 504 Finnish SMEs | Most important mechanism for protecting innovations | Informal means of protection are more commonly than patenting most important
However, firms with university cooperation are likely to identify patents as most important |
Means for commercializing new product technologies

<table>
<thead>
<tr>
<th>Means</th>
<th>Japan(^1)</th>
<th>Sweden(^1)</th>
<th>US(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Taking out patents to deter imitators (or to collect royalties)</td>
<td>3.3</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>(b) Exercising secrecy</td>
<td>2.4</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>(c) Creating market lead times</td>
<td>2.7</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>(d) Creating production cost reductions</td>
<td>2.9</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>(e) Creating superior marketing</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>(f) Creating switching costs at user end</td>
<td>1.9</td>
<td>1.7</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Notes
The highest and lowest values are overlined and underlined, respectively.
2. As reported in Levin et al. (1987). Perceptions for mid-1980s, rescaled to the scale used in the current study.

(Scale: No importance = 0, 1, 2, 3, 4 = Major importance)
Commercialization strategies for new product technologies

<table>
<thead>
<tr>
<th>Question</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5.1.5a How important for your company, on average, are the following strategies in order to commercialize new product technologies?</td>
<td></td>
</tr>
<tr>
<td>a) Taking out patents in order to delay or deter imitators</td>
<td>2.82</td>
</tr>
<tr>
<td>b) Selling licenses</td>
<td>1.22</td>
</tr>
<tr>
<td>c) Exercising secrecy</td>
<td>2.21</td>
</tr>
<tr>
<td>d) Creating market lead times</td>
<td>2.23</td>
</tr>
<tr>
<td>e) Creating cost reductions in production</td>
<td>2.63</td>
</tr>
<tr>
<td>f) Creating superior marketing and after-sales service</td>
<td>2.59</td>
</tr>
<tr>
<td>g) Creating costs for the customer to change supplier</td>
<td>1.28</td>
</tr>
</tbody>
</table>

(Scale: No importance=0, 1, 2, 3, 4=Major importance)
Complementarities across commercialization strategies

Number of buyers (or sales volume)

Imaginator sales

Innovator sales

Market lead time through patent and/or know-how protection

Number of sellers

time
Complementarities across commercialization strategies

Direct labor cost per unit

Price level

$
Complementarities across commercialization strategies

$\text{Cash flow over PLC}$

R&D, etc.

etc.

etc.
Empirical results

Q5.1.5b How important for your company, on average, are the following means for creating and maintaining lead times on the market in relation to the competitors?

<table>
<thead>
<tr>
<th>Mean</th>
<th>Description</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Continually taking out patents in order to delay and increase costs for competitors</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>b) Using secrecy to delay and increase costs for competitors</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>c) Increasing resource efforts to increase own R&D pace</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>d) Using new technology in the R&D work (e.g. for simulation, experiment acceleration)</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>e) Using new organizational solutions in the R&D work (e.g. concurrent engineering)</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>f) Conducting ongoing development</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>g) Outsourcing</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>h) External R&D cooperation</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>i) Other (please specify):</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Theoretical examples

\[V = \int_{0}^{L} \rho S(t) e^{-rt} dt - DI = \left(\frac{1}{r} \right) \rho \hat{S}(1 - e^{-rL}) - \frac{1}{(\lambda + r)} \rho \hat{S}(1 - e^{-(\lambda + r)L}) - DI \]

\[EV = EV^{\text{pat}} + EV^{\text{sec}} - EDI \]

\[EV^{\text{sec}} = E \left[V^{\text{sec}} \mid L > \hat{L} \right] \cdot P(L > \hat{L}) = \left(\pi \cdot e^{-\mu \hat{L}} / (\mu + r) \right) \cdot e^{-r\hat{L}} \]

Past studies of commercialization/appropriation strategies for innovations do not imply an inferior role of patents.
Strategic implications

1. Multi-protection, using various complementary IPRs for different innovation components.

2. Strategy mix, using various complementary commercialization strategies in tandem.
Do patents hinder commercialization?
Patent strategies
1) Ad hoc blocking and 'Inventing around'

2) Strategic patent (SP searching)

3) 'Blanketing' (or 'flooding')

4) 'Fencing'

5) 'Surrounding'

6) Combination

Legend

- O = Own patent.
- X = Competitor's patent.
- → = R&D direction of competitors.
Technical performance (e.g., lumen/watt)

I

II

'Sailing effect'

Patent flow I:

A1

B1

A2

A3

B2

B3

Patent flow II:

A1

A2

A4

A5

C1

Technology base I

A3

B2

B1

Technology base II

C1

A1

A2

A4

A5

Legend:

A1, B2 etc = Company A's first patent in the area, Company B's second patent in the area etc.

I, II = Two technical performance curves, corresponding to technology base I and II, represented by two overlapping sets of technologies, being partly protected in technology space by two patent flows over time. The 'sailing effect' refers to improvements in old technical performance in response to threats from new technologies.

Circles denote scope of patents
Arrows denote patent granting dates
1. Try to invalidate patent.
2. Try to invent around (this is not economically feasible when blocked by a strategic patent, by definition).
3. Try to obtain the technology through acquisition, joint ventures or licensing.
4. Try to cross-license or pool patents, for example through fencing-in or counter-blocking in some other area.
5. Try to build up bargaining position, for example through partnering, purchasing power, patent power, credible threats.
6. Ignore or infringe (wilfully or not).
7. Wait until patent expires.
8. Stop R&D and any commercial operations.

Legend: = Decision point. = Chance point.
The influence of other companies’ patenting on company R&D

<table>
<thead>
<tr>
<th>Question</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5.1.4 How is your company affected on average by other companies’ patenting? (Yes=1, No=0)</td>
<td></td>
</tr>
<tr>
<td>a) Our R&D needs are reduced because duplication is avoided and cooperation and licensing can occur</td>
<td>0.19</td>
</tr>
<tr>
<td>b) Our R&D needs are increased because we must invent around the patent or acquire the technology concerned</td>
<td>0.45</td>
</tr>
<tr>
<td>c) We are hindered in our R&D and discontinue it</td>
<td>0.27</td>
</tr>
<tr>
<td>d) We do not allow ourselves to be affected</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Theoretical example of IP Assembly problem: Cumulative invention

Simplest case:

\begin{align*}
 x_1 & \text{ Essential product patent held by agent A} \\
 y_1 & \text{ Improvement of } x \text{ held by agent B} \\
 x_2 & \text{ Substitute technology to } x_1 \\
 y_2 & \text{ Substitute technology to } y_1
\end{align*}
Patenting options for agent B

Invent around: $y_1 \rightarrow x_2$

Surround with application patents

Fence in process technology

$$V_A(x_2 \mid x_1) = V_B(y_2 \mid y_1) = 0$$
Licensing options

A sells license of x_1 to B

B sells license of y_1 to A

A and B cross-license

Compulsory licensing
Extensions to more agents, substitutes and complements become cumbersome.
Counterfactual thought experiment

Pick the most cumulative S&T area, i.e. mathematics.

Assume inventive mathematical theorems were patentable.

Would the mathematical developments be halted?
Conclusion

Patents may increase as well as decrease R&D of others.

Patents may delay (also by design) commercialization of others.

The problem of patents impeding cumulative invention is, so far, probably overstated.

Technology markets may fail, as any markets.
Strategic implications

Policy-level

1. Filter out patents (reduce volumes) by raising:
 - Fees (base + renewal fees)
 - Examination quality
 - Standards of non-obviousness and usefulness

2. Filter out patents by reducing:
 - Patents scope
 - Patentable subject matter
 - Length of patent protection

3. Improve technology markets by enabling:
 - Patent pooling and technology sharing
 - Block licensing and cross-licensing
 - ”Open-licensing”
 - Rights collection and clearance

4. Reduce strategic behavior and abuse by:
 - Compulsory licensing
 - Injunctive reliefs

5. Reduce legal uncertainty regarding
 - Validation
 - Dispute resolution

6. Enable integration and internalizing of interdependent R&D.

7. Employ alternatives to private rights approaches
 (e.g. procurement contracts or public finance).

Company level

1. Try to invalidate blocking patents.

2. Try to invent around blocking patents.

3. Try to obtain blocked technologies through acquisition, joint ventures or licensing.

4. Try to cross-license or pool patents
 (e.g. through fencing-in or counter blocking in some other area).

5. Try to build up bargaining position
 (e.g. through partnering, purchasing power, patent power and create credible threats).

6. Ignore or infringe blocking patents.

7. Wait until blocking patents expire.

8. Stop R&D and related commercial operations.
Strategic implications

Thus: Technology market failures must be monitored and addressed, e.g. by fair pricing and compulsory licensing, esp. in standard setting.
Summary and Conclusions

1. Macro-level background
 a. Convergences in the world economy
 b. New view of the IPR system as a tool for governance of markets and firms in a new type of globalized knowledge market economy.

2. Micro-level
 a. Patents and innovations for growth
 b. Semi-open technology and innovation strategies governed by IPRs
 c. Complementary commercialization/appropriation strategies
 d. Cumulative invention and remedies for IP assembly problem
Thank you for your attention!

Questions?