
OPEN SOURCE AND
COMMERCIAL SOFTWARE
AN IN-DEPTH ANALYSIS OF THE ISSUES

Contents
Part I: Understanding the Fundamentals

Definitions .1

Understanding Open Source and Commercial Software . 2
Business . 3
Development . 4
Licensing . 5

Intellectual Property . 6

Policy Considerations . 7

Part II: Technical Concerns – Cost, Security and Flexibility

The Debate . 8
Cost . 8
Security . 9
Flexibility .12

Co-Existence of Open Source and Commercial Software 15

Part III: Policy Concerns – Piracy, Digital Divide and Domestic Industry Development

Government Concerns . 16
Software Piracy . 16
Digital Divide . 18
Domestic Software Industry Development . 19
Competition Development . 20
Sovereignty . 22

Government Response . 22

Part IV: Looking Ahead – Technology Neutrality, Interoperability and Standards

Software Procurement Preferences . 23

Interoperability and Technology Standards . 25

Open Standards . 26

Driving Software Innovation . 28

1

P
art I

Part I : Understanding the Fundamentals

Part I : Understanding the Fundamentals

T
he growing popularity of open source has

altered the software industry landscape in

a dramatic way in recent years. Few

technical subject matters today are as

passionately debated as that surrounding open

source and commercial software – two prominent

models of software licensing. Policy concerns

surrounding commercial and open source

software have also confounded Governments

around the world. In particular, open source is

often seen as a possible solution to some of the

challenges presently faced in various countries,

especially among developing nations. Such

challenges include grappling with the piracy

problem, desiring greater control over software

that is acquired and dealing with broader policy

perspectives on how best to develop a thriving

domestic software industry. With a view to assist

decision-makers discern the issues in this debate,

let us examine the key considerations to be taken

into account in making software policy decisions.

In this first part of our four-part discussion, we

will examine the nature of open source and

commercial software development

methodologies, the related licensing approaches

and the underlying intellectual property

foundation. In the second part, we will further

review the characteristics of the two software

models that are commonly debated to better

understand the true nature of these models. In

the third part, we will consider the issues that are

of particular concern to Asian Governments and

economies. In the fourth part, we will consider

some approaches and strategies on software

procurement and technology standards that

Governments are contemplating to address

some of the challenges presently faced by

consumers and the industry.

DEFINITIONS

In this discussion, let us define the terms as

follows:

• “Open Source” is a software-licensing model

where the source code of the software is

typically made available royalty-free to the

users of the software, under terms allowing

redistribution, modification and addition,

though often with certain restrictions. The

support, training, updates and other services

for the software may be provided by a range of

entities, increasingly under commercial

arrangements. Open source programs are

often, though not exclusively, developed

through a collaborative effort in which a

number of persons contribute elements of the

final software. Software companies are also

contributing paid programmer time and

programs developed in-house to the open

source community.

• “Commercial Software” is the model where the

software developed by a commercial entity is

typically licensed for a fee to a customer (either

directly or through channels) in object, binary

or executable code. The commercial entity

often provides support, training, updates and

other similar services needed by customers to

efficiently use that software. The source code

of the software may be made available1 to

certain users of the software through special

licensing or other agreements, but is usually

2

Open Source and Commercial Software

not distributed to the general public, and may

not be copied or modified except in a manner

provided for in such agreements.

Each of these software models can translate to a

viable business strategy for software companies,

as well as offering customers real advantages. The

models are not mutually exclusive, and companies

are increasingly finding ways to embrace both

approaches and allow them to co-exist. For

example, there have been proprietary operating

system platforms that have benefited from the

open source development by adopting an open

source approach for the lower levels of the system

(e.g. device drivers) while

keeping the higher levels

proprietary (e.g. user

interface)2. This approach

allows greater focus to be

placed at the development of

the higher-level components,

where innovation may bring

greater benefits to customers.

Conversely, there are software providers who have

contributed commercially developed code to the

open source community to allow open source

solutions to operate on a broader range of

platforms3. Increased competition and a larger

number of viable alternatives of products on the

server and desktop platforms have contributed

significantly to the IT ecosystem. Software

solutions continually innovate, with software

providers focusing and improving substantially on

emerging issues such as addressing security and

reliability concerns.

UNDERSTANDING OPEN SOURCE AND

COMMERCIAL SOFTWARE

The open source and commercial software

approaches have each their own strengths and

challenges, and can bring to users a number of

benefits along with tradeoffs, depending on the

circumstances in which they are deployed.

Products in the form of

commerc ia l -o ff - the-she l f

software have been in the

market for many years,

offering consumers a wide

range of computing

functionalities and productivity

enhancements on a mass

scale. Customized commercial software

solutions have also met the complex business

operating requirements of larger organizations

that generic off-the-shelf products may not be

able to adequately meet. Driven by the needs of

the customers, the vendors of commercial

software solutions continually strive towards

developing products that are easy to use, rich in

functionality, value for money and supported by a

services eco-system as demanded by customers

who may not be technically savvy, and want to

solve their problems with minimum fuss.

Open source licensing has been in existence for

decades, primarily in academic and research

organizations in the past. More recently, it has

1 Some examples of commercial software companies
disclosing source code include Real Networks with their Helix
project, Computer Associates with their Ingres release, SAP
with their release of OpenDB and Microsoft with their Shared
Source Licensing Program. Such source code releases may be
based on terms that allow modification and re-distribution of
source code, e.g. Windows CE.
2 The Apple MacOSX product is one such example. See
http://www.apple.com/opensource and
http://www.wired.com/news/technology/0,1282,18488,00.html.
3 IBM has taken this approach to enable Linux to operate on
its entire range of hardware platforms. See
http://www.intelligententerprise.com/010810/
412e_business1_1.jhtml?_requestid=142394. a

The models are not
mutually exclusive,
and companies are
increasingly finding

ways to embrace both
approaches and allow

them to co-exist.

Part I : Understanding the Fundamentals

3

P
art I

attracted greater attention due to the corporate

backing or commercial support of open source

software in the market.

Consumers today are choosing from a wide

range of software choices and vendors, even in

areas that traditionally have few competing

products. Some select open source because it

allows them to freely copy, modify and then re-

distribute the source code. Such characteristics

appeal to those who want to alter the software

source code, for example, in academic settings

where experimentation is a primary objective or

in settings where a high degree of customization

may be required.

Active participation in a development community

can enhance partnerships and mindshare among

the participants, thus building valuable

relationships with a broad spectrum of developers

that cut across organizational boundaries. Open

source and commercial software developers both

try to create these communities through formal

and informal sharing. The direct participation of

users and developers in the use of open

standards – which are distinct from open source

software – can enhance interoperability rapidly

and are thus used by both groups of developers.

There are today more options available to

software users. It is very

common to find user

environments deploying a

mixture of open source and

commercial software

platforms and applications to

meet different demands. The

competition between different

software providers has made

the overall software industry even more

responsive in meeting the needs of consumers,

and ultimately benefiting consumers with greater

choices and better pricing options.

To better understand open source and

commercial software, we will examine the two

models from three perspectives – the business,

development and licensing.

Business

Businesses exist and can be sustained because

they generate profit through their activities.

Shareholders primarily measure business

performance by the profit levels. While there are

some basic differences between the business

models of open source and commercial software

providers, providers of both models must each

find their means to create sustainable revenue.

Creating software for software’s sake is not

sustainable economically.

The focus of commercial software providers is on

the functionality, features and innovativeness of

their technology to meet the customer’s needs,

as their revenue model is based on the customer

licensing their software. Customers purchase

new versions of software when it provides new

functionality, features and value. This incentive

drives a tremendous flow of

research and development

spending into new software,

the results of which include

higher productivity, lower

costs of business, and new

tools for learning.

It is very common to
find user environments
deploying a mixture of

open source and
commercial software

platforms and
applications to meet
different demands.

4

Open Source and Commercial Software

Open source vendors create revenue from

supporting services and hardware that they

package around open source software and for

which they charge fees. For instance, some

companies package open source software, sell it

with their personal computer or server hardware.

The companies sell such hardware and charge

the customer separate fees for the service they

provide to enable their software and hardware to

work together. Another example is a system

integrator who earns revenue by creating

customized solutions for customers by using

existing open source software as the starting

point, and charging the customers for the time

and resources to do the necessary

customizations to meet the specific user

requirements. Another model is to allow free

downloads of an open source application and to

convert this base of users into paying customers

for a full-featured version. In other instances, the

pooling of development resources in support of

an emerging technology can also provide indirect

revenue or benefits to a company that provides

open source software, such as the sale of the

commercial software and/or hardware they offer

beside the open source software4.

It is recognized that in the open source

community, there is also a group of contributors

who are motivated not by direct revenue

generation, but by an altruistic notion that all

software should be free and that even though

revenues should not be derived from software,

the code will be improved by volunteers who

willingly make their work available for anyone’s

use and reference.

From the customer’s perspective, the value that a

customer derives from a commercial software

product typically correlates with the licensing fee,

software functionality and product support. While

the customer can correspondingly hold the

commercial software vendor directly accountable

for the software, there is no “owner” of most

open source software and thus it is difficult to

assign accountability. A number of open source

vendors have approached this concern by

providing customers with similar assurances

through licensing terms and the payment of

corresponding fees5. In making their procurement

decisions, customers from businesses and

governments should weigh each one of the

above factors according to their individual needs,

concerns and environment.

Development

Another factor that has historically distinguished

open source and commercial software is the

approach taken towards the development of

software. This is rapidly evolving and converging

with each model adopting some practices of the

other.

Commercial software development teams

historically work within the confines of a single

organization or unit for the primary code

development. With open source development,

typically there is a structure for the involvement by

4 A number of major vendors have also increasingly made
their software, e.g. development tools, available as open
source. See
http://www.zdnetasia.com/news/software/0,39044164,392394
09,00.htm.

5 In instances where third party vendors undertake to provide
to customers accountability or assurance for specific
implementations of open source software, it is important for
the customer to understand the applicable limitations and
conditions under which such accountability is provided, e.g. it
may not extend to situations where the customer modifies the
software himself. This is to be expected as such vendors offer
value through testing, support, maintenance and upgrades
that are implemented on a stable and known source, and
changes made independently by a customer will limit the
ability for the vendor to provide guarantees.

Part I : Understanding the Fundamentals

5

P
art I

a wide variety of players. This dichotomy is

converging to a common model of development.

Today, commercial software development teams

have developed structures to collaboratively

develop software with teams that span the globe.

There are also open source software solutions

originating from a single company or programmers

backed by commercial vendors. These open

source solutions are contributed to the community

and maintained by just one or two key contributors.

In both the commercial and open source software

development approaches, the common underlying

development process is an iteration of design,

standards, coding, testing, release and feedback.

There is a core set of programmers who write the

program and release it to a community for beta

testing. The beta testers run the program and

report back to the programmers on bugs and

patches. The programmers then change the source

code to solve the problems identified before the

software is released generally.

Experience in the industry over the years

indicates that a proper framework that facilitates

software development by multiple teams or

contributors and their diverse perspectives can

lead to a rapid rate of innovation, optimization,

vulnerability-fixing and timeliness to market. Both

open source and commercial software

development teams adopt such structures in

many of today’s software development projects.

For the programmers, both the commercial and

open source development environments

contribute towards their individual growth and

skill development. Foundational computer

science concepts have been articulated in

textbooks for many years and such texts are

continually updated resulting in a wealth of

published information available to students.

Traditional methods of teaching based on such

texts have produced good programmers over the

many years since software was first written. The

key is in the effectiveness of the educators and

professors in teaching students the relevant

concepts in a way that the students learn to write

their own code to implement those concepts,

and not in the students having access to source

code merely to copy from. Skilled programmers,

whether developing with the open source or

commercial software models, are able to gain

recognition in their own right for their contribution

to software development as they solve unique,

difficult or complex problems.

Licensing

The primary underlying difference between the

open source and commercial software models is

in the licensing of software. Commercial software

providers typically adopt the traditional software

licensing approach where permission to use the

software is granted to a customer in return for a

fee. The customer is usually permitted to use,

reproduce or adapt the software only according

to the terms of the license.

Open source software is made available under a

variety of licensing approaches with certain

common features such as the right to modify and

the right to redistribute the software. The

copyright within the software is the foundation of

the licensing contract, just as it is the case with

commercial software. Rights and permissions are

granted subject to conditions. In general, these

conditions restrict how the software may be

further changed or distributed, rather than impose

a requirement that a fee be paid for it. There are

6

Open Source and Commercial Software

two principal open source licensing approaches –

the GNU General Public License (GPL)6 and the

Berkeley Software Distribution (BSD) License7.

Under the GPL, all derivative works of the

software and subsequent versions down the

chain must be licensed and distributed on the

same terms as the original software. Source code

subject to the GPL permanently remains subject

to GPL. This permanent nature of the GPL, as

intended by the authors of the GPL, constrains

the options available to developers building on

GPL software in creating, distributing or

commercializing products using existing GPL

source code. There are also other potential

challenges faced by developers, for instance in

determining when software developed for a GPL

software platform is considered a derivative work

that is subject to the GPL.

In contrast, under the BSD License, developers

have the freedom to integrate the licensed software

with the developers’ own source code to create

new products with few restrictions. The BSD

License, for example, allows programmers to use,

modify and redistribute source code and binaries

of the original software. However, unlike the GPL

approach, programs containing code subject to the

BSD License do not have to be distributed under

the BSD License. Derivative works can be

distributed either in an open source manner, or

under a more traditional commercial license. Where

a purchaser acquires the software only for his own

use and does not intend to build on and

redistribute the modified software, the distinction

between GPL and BSD is not as essential.

The distinction is however important to a software

developer that writes code for commercial

purposes. The GPL prohibits charging money for

the distribution of source code, other than to

cover the administrative cost of copying and

shipping. While the GPL permits the open source

software to be sold to a customer for a fee, the

license and the access to the source code allows

customer to freely redistribute or modify the code

without further payment to the original party the

code is acquired from.

Charging fees for system setup, system

management, support, maintenance and other

related services is permitted under the GPL. It is

on this basis that commercial support services

for Linux – which is licensed under the GPL – are

offered by companies and used as one of their

revenue sources.

INTELLECTUAL PROPERTY

In the knowledge economy, one of the most

important assets that we can leverage is our

intellectual assets – data, information, knowledge

and other intellectual creations such as software

and other inventions. The continued growth of

the overall software economy is founded on the

protection of such intellectual property rights.

Without such protection, software owners lack

the incentive and legal basis for commercializing

their creations, and the software industry cannot

be an engine of economic growth.

Although open source software is often available

for free download, it does not follow that there is

no need for intellectual property rights protection

under the open source software model. On the

contrary, open source licenses impose terms and
6 See http://www.gnu.org/copyleft/gpl.html.
7 See http://www.opensource.org/licenses/bsd-license.php.

Part I : Understanding the Fundamentals

7

P
art I

conditions based on elements of intellectual

property protection (as illustrated in the Netfilter

example that follows). In addition, the use of the

source code from open source developers is

often permitted on the condition that there is an

appropriate attribution to the author of the

original source code.

In the 2004 German case of Netfilter Project

against Sitecom Germany GmbH8, a three-judge

German court recognized the GPL by requiring

the defendant company to disclose the source

code of its product that relied on and

incorporated components of open source

software written by the

plaintiff. It is worth noting that

in this case, the plaintiff’s

grounds for the action were

founded on copyright. The

plaintiff was not in a position to

take legal action against other

alleged violators of the GPL,

since in those cases, the

plaintiff did not own the

copyright in the works that were used by the

other violators. This illustrates that in both open

source and commercial software models, the

need for intellectual property rights remains the

foundation for the license conditions to operate.

Hence, irrespective of the software models

adopted, the existence of a sound intellectual

property rights regime is essential for the

software industry.

POLICY CONSIDERATIONS

As we will see further in the second part of this

discussion, the arguments advocating any

particular software development model may, on

closer examination, not be as unequivocal as they

first appear to be. Choices and procurement

policies should be made based on value-for-

money and fit-for-purpose considerations, and

should not be made or preferred based on broad

categorizations that do not ultimately support

sound objective principles. The benefits and

appropriateness of the considerations relating to

the open source and commercial software models

arises according to the customers’ needs in

particular situations and not as generic “truths”.

At the broader policy level, it

should be recognized that

there is a need for choices in

software selection and

implementation, and for skills

development to support a

growing diversity of software

development models.

Technology innovation is best

accomplished by a healthy,

competitive and diverse marketplace that allows

software companies to develop and grow

according to their own strengths and capabilities.

Procurement policies of organizations and

Governments have a key role to play in

maintaining this diversity that is essential to the

growth of the software industry. Fair and open

competition, and not procurement preferences,

should determine which products earn the

confidence of consumers. Rigorous competition

ensures that technology providers have the

incentive to invest and produce the best products

for the market, which in turn means broader

consumer choice among many innovative

technologies.
8 See http://www.netfilter.org/news/2004-04-15-sitecom-
gpl.html and http://news.com.com/2100-7344-5198117.html.

Technology innovation is
best accomplished by a
healthy, competitive and
diverse marketplace that

allows software companies
to develop and grow

according to their own
strengths and capabilities.

8

Open Source and Commercial Software

I
n part two of this discussion, we will take a closer

look at some of the specific arguments that the

proponents of open source and commercial

software make in relation to the comparative

strengths of different software models.

THE DEBATE

The ongoing debate between commercial

software and open source has sometimes

centered on whether one approach to the software

licensing and development model is inherently

superior to the other. In fact, these models each

serve the specific needs and circumstances of the

individual customer environment where the

software is to be deployed. Such needs and

circumstances determine what factors are relevant

and applicable, and whether certain advantages

and disadvantages of the open source or

commercial software model should be given more

weight and consideration.

Cost

Whether open source software is cheaper than

commercial software for a particular customer

should be determined in the context of the

lifetime costs of a product. While some open

source proponents say that open source

software is cheaper than

commercial software,

proponents of the commercial

model also point out that the

total cost of ownership can be

less for commercial software

than for open source software

with similar functionality.

In terms of the initial purchase price, open source

solutions may be cheaper than commercial

software. However, in making buying decisions,

consumers must also consider the cost of

software during its entire lifecycle, rather than the

one-time purchase price. Just as consumers

weigh the long term costs of buying cheap mobile

phones with recurrent subscription packages as

opposed to more expensive phones with lower

recurrent costs, they should not determine the

cost of software merely based upon the initial

purchase price. They must also take into account

long-term support and maintenance needs, in

addition to other less tangible issues such as

usability of the product and productivity gains.

Purchasers should also consider the cost of

retraining users familiar with one product to

become competent in an alternative product.

Such retraining costs may be quite significant

when one takes into account the total time spent

by the users undergoing such retraining and the

initial lower productivity levels while the users

familiarize themselves with the alternative

product.

Not surprisingly, there are numerous competing

studies and surveys in this area, each considering

a different set of cost factors, and correspondingly

drawing different conclusions as to the relative

costs of one model versus the

other. What is clear, however, is

that technology decision-

makers should weigh the full

range of costs, including

lifetime costs and migration

costs, when evaluating their

own choices in this area.

Part II : Technical Concerns – Cost, Security and Flexibility

Technology decision-
makers should weigh
the full range of costs,
including lifetime costs

and migration costs, when
evaluating their own
choices in this area.

9

P
art II

Part II : Technical Concerns – Cost, Security and Flexibility

Security

It has been argued that open source solutions,

whose source code is available for public

scrutiny, are inherently more secure than

commercial software solutions, whose source

code is not published. There are also those who

argue that where source code is published, it is

easier to find and exploit flaws in software, and

also others who say that source code access is

irrelevant to software security. The viewpoints are

wide-ranging.

Security of software is an industry-wide concern,

and vulnerabilities will always be present in

software. Vulnerabilities affect all complex

software programs and are not more or less

prevalent for software developed under an open

source or commercial software model. The issue

is in how to minimize and remedy the

vulnerabilities, not which licensing model leads to

more secure software. Criminal attacks against

software remain a critical consideration in the

minds of all users, and it is therefore important to

understand the underlying principles in this area.

The security of different commercial and open

source software offerings varies considerably.

While the design of security-related features

matters significantly, total security depends just

as much on how well the software is deployed,

configured, updated and maintained, including

whether product vulnerabilities are discovered

and resolved through appropriate and timely

updates. These variables are contingent on the

customer taking due care, and not on the

licensing or development model. The three key

factors related to the security of software are the

quality of the developers, the techniques and

tools used by the development team to reduce

vulnerabilities, and the strength of the

relationship between the customer and the

software provider.

In considering whether having source code

available for public scrutiny makes the code more

secure, one needs to understand the genesis

behind this argument. It has often been said by

those concerned about security that security

cannot exist by reason that how it works (i.e. the

security mechanism) is kept under wraps –

“security by obscurity is no security”. This belief

has its roots in the early days from researchers

developing encryption technologies for

scrambling data against interception. It follows

that one should not take for granted assertions

that a “black-box” product is secure because no

one knows how it works. However, it does not

mean that because the source code of a product

is known, it must therefore be secure. Good

security is not dependent on whether the

mechanism (in this case, the source code) is

known or published, but on how the mechanism

is designed, implemented and managed by

qualified security specialists. A product’s security

depends on whether qualified persons have

reviewed and tested the security mechanism to

minimize the number of vulnerabilities that might

be exploited by criminals, not on whether the

source code is available.

In the open source community, where

voluminous quantities of source code are

available, it is not realistic to expect that every

single line of the code has been developed

according to a methodology that is known to

reduce vulnerabilities or that it has been

scrutinized by a wide range of security experts.

10

Open Source and Commercial Software

New packages and add-on software are

developed and distributed regularly, but they may

not have undergone the same level of scrutiny as

that of other more established packages. It has

been found that it is difficult to attract volunteer

“eyeballs” that are qualified for (or interested in

doing) the difficult job of code review for security

vulnerabilities1. Users who obtain open source

packages are likely to compile, install and use the

software even before taking a

look at the source code, even

though it may have been

provided with the software.

Only a very small minority of

the community will indeed

scrutinize the source code of

every program before any use.

Even then, few code reviewers

or writers are trained or skilled

in identifying security vulnerabilities by merely

reading the code. A good programmer does not

necessarily make a good security specialist.

Some open source solutions have vulnerabilities

that have remained undiscovered2 for years

notwithstanding public availability of the code. It

has also been shown3 that having access to

source code does not prevent a backdoor from

being hidden and remain undetected in software.

Given such a scenario, it appears premature to

declare that open source is superior in security.

The concern over the lack of access to source

code is increasingly also being addressed by

commercial software vendors who make available

such source code for specific purposes. For

instance, a number of Asian governments and

security agencies have had access to the source

code of commercial software products, and have

undertaken security review of

such products. This access

provides the government with

the opportunity to rigorously

review the source code of the

product, as they might also do

so with the source code of an

open source solution. With

time, there are also increasing

instances of the source code of

other commercial software products being

released publicly. The disclosure and availability of

source code for the purposes of undertaking a

security review is hence no longer a compelling

basis to prejudge commercial software and open

source solutions4. It should also be noted that the

availability of source code can also be a double-

edged sword – both trusted and untrusted entities

have access to the code, and this can be a

security risk. Hence, different developers choose

alternative approaches, each attempting to

achieve greater security.

The speed through which vulnerabilities are

1 The Sardonix Project was backed by the U.S. Defense
Advanced Research Projects Agency (DARPA) and aimed to
set up a public website to meticulously track which open
source code have been audited for security buys. There were
no volunteer auditors even after two years. See
http://www.securityfocus.com/news/7947.
2 Websites such as http://www.viruslist.com provide
information on vulnerabilities on a variety of commercial and
open source platforms.
3 See the classic paper by Ken Thompson, one of the fathers
of UNIX, “Reflections on Trust”
(http://www.acm.org/classics/sep95), where he notes that no
amount of source-level verification or scrutiny will protect
against untrusted code. The open source process cannot find
clever subversions, no matter how many people look at the
source code.

4 It should also be noted that the software landscape comprises
of different levels of disclosure of source code. Just as some
commercial software providers may decide to fully disclose
their source code in some circumstances, core teams of open
source developments can also choose not to disclose certain
aspects about their code in other circumstances. In both
software models, there are instances where the software
developers do not make full disclosure, e.g. where they
disclose vulnerabilities after a patch is available.

A poorly maintained
product offers little

security, regardless of the
software development

model used to create the
product, or the rigor to
which the software was

tested.

11

P
art II

addressed and remedied is also a point of

contention among proponents of different

software development models. Neither

development model necessarily addresses

vulnerabilities faster than the other. More

importantly, the assumption that a quick fix is a

good fix is not necessarily the case. For some

customers, it is important that

updates or patches for

identified vulnerabilities be

thoroughly tested in different

environments and

configurations before they are

rolled out, lest they lead to other

system stability issues. For

others, it is essential for the customer to have

accountability from the software provider for the

quality of the updates or patches provided5. The

speed of providing an update or patch is not

always the most important criterion, just as it is

not always the case that either software model

has a faster turnaround time on updates or

patches than the other. Conclusions drawn from

comparative studies of the security of products

indicate that assumptions generally made about

the speed of fixes available for different operating

systems may not necessarily be accurate6. The

duration before fixes are made available may also

be dependent on a range of factors not related to

the software model, including the necessary

testing that needs to be done before the fix can

be released.

Another misconception in this area of security

focuses on the assertion that because the

criminal exploitation of vulnerabilities in

proprietary software is sometimes more widely

felt than the exploitation of

vulnerabilities in open source

software, then proprietary

software must therefore be less

secure. Here, it should be borne

in mind that the impact of

software exploits has more to

do with the popularity of the

software, than with its design or the method of

software development. The program that is most

commonly used is frequently the program that

attracts the most interest among cyber criminals,

and will be the platform that is more likely to be

attacked, as hackers have a greater incentive to

hit a larger target than a smaller one.

Security issues result from a combination of

factors, including the software design and

implementation as well as user behavior and

usage, coupled with the skill and expertise of the

user in installing, deploying and maintaining the

software. Anecdotal experiences relating to the

number or perceived impact of attacks targeting

commercial software are not necessarily

testimony to the notion that open source

solutions are less vulnerable or that commercial

software solutions are more vulnerable. A

technological product can only be as secure and

as reliable to the extent that the necessary care

was taken to properly install and maintain the

product. A poorly maintained product offers little

security, regardless of the software development

Part II : Technical Concerns – Cost, Security and Flexibility

5 I.e. some customers may not want just any third party to
provide that update or patch and have neither the third party
nor the original software provider bear any responsibility for
the patch or fix, but they want to hold the original provider
accountable.
6 It is sometimes assumed that open source developers
respond more quickly to vulnerabilities than commercial
developers. However, studies done (see for example the report
by Forrester: “Is Linux More Secure Than Windows?” (at
http://www.forrester.com/Research/Document/Excerpt/0,7211,
33941,00.html and
http://www.linuxworld.com.au/index.php/id;554502920;fp;2;fpi
d;1) have concluded that on average, Linux distributors has
taken longer than Microsoft to patch security vulnerabilities.

The security of any
software product and
implementation is not
pre-determined by the

method of development
or distribution.

12

Open Source and Commercial Software

model used to create the product, or the rigor to

which the software was tested. Simultaneously,

the standardization around a platform can

simplify and accelerate the security updating

processes.

Therefore, one cannot draw any reliable

conclusions about whether a product is more or

less secure on the basis of the software’s

development or licensing model.

The security of any software product and

implementation is not pre-determined by the

method of development or distribution, but by

the proper design of security features, and

equally important by the correct deployment,

configuration and maintenance of the software

by the customer. Today, we see software licensed

under open source and commercial models that

has been developed with security in mind.

Developers are using methodologies known to

reduce vulnerabilities through up front

assessments, rigorous and organized testing,

and post release response centers that assess

vulnerabilities and provide updates. How the

software is licensed is not a significant factor in

this process. Each product and implementation

should be assessed on its own merits and

strengths.

In recent years, software developers across the

industry have redoubled their efforts to address

consumer concerns and security, and security

issues have featured prominently in the decisions

and choices made by software companies, as

well as consumer organizations, There is a strong

motivation and incentive for commercial software

developers to undertake hard and resource-

intensive testing of their code and updates or

patches for security, and this is increasingly true

of open source software developers and

distributors who are interested in

commercializing their products. Ultimately, good

code is good code, regardless of whether the

source is open or not.

Flexibility

The argument that open source solutions are

more flexible for customers than commercial

software stems from the ability of a customer to

examine the source code and make the

necessary alterations to the code. This also

allows technically-savvy customers to potentially

identify any problems in the system and make

their own changes or fixes to the software to

rectify the problem.

There are resources available for both

commercial software and open source solutions

to correct the security vulnerabilities in software.

As explained earlier, there is no clear advantage

with either model when it comes to rectifying

known security problems. Updates and patches

for commercial software are typically available

only from the original software vendors. They

have an incentive to ensure the reliability and

trustworthiness of the updates and patches

released, since their credibility will be severely

affected if their use results in more problems.

Updates and patches for open source solutions

come from a greater variety of sources. They may

be developed through community effort and

distributed through channels such as discussion

groups. Such updates and patches may be

quickly available, and they are iteratively refined

and improved on by the community if they initially

do not correct the problem completely, though

13

P
art II

Part II : Technical Concerns – Cost, Security and Flexibility

they may be subject to less rigorous testing

before they are released.

However, for lesser known open source software

that is not widely used or supported by

commercial companies, the flexibility to allow

people other than the original software vendor to

contribute solutions to

identified vulnerabilities may

not necessarily be desirable

for business customers.

Although updates and patches

may come from a broader

community, such flexibility

reduces the accountability of the original

software vendor to the customer for the problems

in the software. Community contributors of such

“public” updates or patches do not usually bear

the same accountability and responsibility as

“commercial” updates or patches that are

distributed by commercial software providers.

Certainty and predictability of business

operations are essential to the efficiency of

business operations. Flexibility that leads to the

absence of accountability by the software vendor

and the lack of predictability of vendor support

can translate to a serious operational hurdle for

businesses.

The flexibility to modify source code in an open

source solution also leads to another

phenomenon known as “forking”. Forking occurs

when one developer decides to modify the

software source code and takes a path that is

divergent from the original software such that any

subsequent changes or improvements made to

one version of the software will not apply to the

other version. Issues of compatibility and

continuity will therefore arise and need to be

managed when forking occurs. A notable

example of forking occurred in the early days of

UNIX when different hardware vendors produced

different variants of UNIX for each of their

platforms, e.g. System V, BSD, AIX, Solaris, HP-

UX, etc.

On a smaller scale, customers

who make their own

modifications to the software

will also find that the

continued support and

maintenance of such changes

becomes a more involved

process, as the support resources need to be

equipped with the knowledge of the prior

customization, as well as the skills needed to

perform subsequent alterations. In contrast,

commercial software solutions tend to have a

more well-defined and controlled upgrade and

migration path for products. Customization built

on such platforms using the published

application programming interfaces often will

continue to work with upgraded and future

versions of the product with little or no changes.

Ultimately, in considering whether flexibility is

important in making a software choice, the main

issue to consider is whether there is a need to

customize the acquired software (whether at the

application or operating system level) to meet

specific needs. If customization is required, the

user needs to obtain additional resources to

maintain such non-standardized customization

from the original release of the acquired software.

If customizations are not done to the acquired

software but are instead built in addition to or at

a layer above the software, the software model of

the acquired software is, in that scenario, not a

The main issue to
consider is whether there

is a need to customize
the acquired software to

meet specific needs.

14

Open Source and Commercial Software

KEY ACTIONS

In light of the issues highlighted, in considering options between open source and commercial

software choices, the following should be kept in mind:

• Cost considerations should be viewed in totality. While cost is an important issue, it is usually

not the sole determining factor for a procurement decision. In some situations, such as in

mission critical or public safety systems, or in places where manpower costs are substantially

higher than software prices, cost may even be a subsidiary concern.

• In any software deployment, the total required manpower should not be underestimated.

Options are available in the market today for suitably skilled and trusted manpower for the

support of a software platform to be retained in-house or obtained from an outsource vendor.

It is essential that the entire range of manpower required be taken into account in the evaluation

and selection of the software product. Such manpower includes resources required for support,

maintenance, training, data migration and conversion, integration with legacy systems,

enhancement of systems, managing incompatible systems, etc.

• To enable the use of a product securely and reliably, there needs to be a shared responsibility

between the customer and the software provider. The software provider has the responsibility to

develop the software in accordance with best practices in security, to rigorously stress-test the

software and to develop updates and patches rapidly when vulnerabilities are subsequently

uncovered. On the part of the customer, suitable and adequate resources should be allocated to

ensure the correct installation, deployment and maintenance of the software. Updates and

patches, when made available by the software provider, should be applied in a timely manner. A

technological product is only as secure and reliable as the extent to which the users have taken

the necessary care to properly install and maintain the product. A poorly maintained product

offers little security, regardless of the software development model used to create the product.

• If a security review of the source code is required, appropriate expertise should be made

available to meaningfully scrutinize the source code of the components to be deployed. It

should not be assumed that because the source code has been made publicly available that it

has, in fact, been sufficiently reviewed.

• Requirements for flexibility in modifying the acquired software should be carefully considered

against whether the expertise to exploit such flexibility is available, and if the necessity for

flexibility is fundamental or merely incidental. The long term support implications for non-

standardized modifications to the software should also be factored into the purchase decision.

Part II : Technical Concerns – Cost, Security and Flexibility

15

P
art II

relevant consideration.

CO-EXISTENCE OF OPEN SOURCE AND

COMMERCIAL SOFTWARE

In the discussion above, the arguments that have

been commonly raised regarding open source

and commercial software solutions are analyzed

with a view to distilling their validity from their

rhetoric. The analysis demonstrates that both

open source and commercial software have their

strengths, and they both have a place in the

market.

As we have seen from the first part of this

discussion, the open source and commercial

software development and business models have

complemented each other in a number of

aspects. Nonetheless, the debate continues with

regards to which model is “superior”. Having

examined the issues in greater depth in this

second part of our discussion, we have aimed to

clarify that the issue of which model is “better”

lies with the specific circumstances or

requirements that a customer may face, rather

than in the inherent nature of either model.

In the third part of our discussion, we will delve

deeper into the pertinent issues that are facing

Asian governments in this area, and we will

consider and analyze the effectiveness of some

strategies that may be adopted to address

concerns of consumers and the industry.

16

Open Source and Commercial Software

I
n this third part of our discussion, we will

examine the policy considerations surrounding

the open source and commercial software

debate that are of particular concern to Asian

Governments and economies. With a deeper

understanding of the issues involved, one can

better discern what would be suitable strategies

and responses to these important concerns.

GOVERNMENT CONCERNS

In recent years, Asian

Governments have taken an

active interest in open source

software as a possible solution

to emerging concerns within

their domestic markets. Such

concerns include a desire to

address software piracy problems, to cope with

digital divide issues, and to develop an

indigenous software industry as a bulwark

against a “dependence” on foreign sources of

software. We will discuss each of these

perspectives in greater detail below.

Software Piracy

The cost of software has often been cited as a

primary impetus for software piracy, with critics

charging that consumers in developing countries

have no choice but to look to cheaper, pirated

products to meet their computing needs.

Similarly, some have argued that the adoption of

open source could potentially lead to a reduction

of piracy levels, since open source solutions may

be freely copied and distributed legally, typically

in a royalty-free manner.

To understand the economics behind the pricing

of software, one needs to consider that a software

product is unlike other consumer-oriented

commodity products. Software is a productivity

tool for businesses and households, providing the

consumer with different levels of productivity

gains. Such gains are possible through the

investments made in the research and

development of software products. Just as one

does not expect the cost of

professional services to be

pegged at a fixed rate

regardless of the experience

and qualifications of the

professional engaged, the

pricing structure of software

should not be expected to be pegged at a

commodity product level, irrespective of its utility.

In countries where piracy rates are high, the

arguments relating to the cost of software and

the advocacy for software prices to be lowered

do not address the crux of the issue. There

remains an underlying necessity for consumer

education regarding the need to respect

intellectual property rights and not to engage in

software piracy or other forms or intellectual

property theft. If high pricing were the primary

reason for software piracy, there would not be the

phenomena of piracy of other already lower-

priced commodity products such as music,

videos and games. Experience has shown that

there is no particular correlation between the

price of software and the levels of software

Part III : Policy Concerns – Piracy, Digital Divide and Domestic
Industry Development

Both open source and
commercial software

products are predicated
on strong copyright

protection.

17

P
art III

Part III : Policy Concerns – Piracy, Digital Divide and Domestic Industry Development

piracy. Some of the most commonly pirated

software products, such as anti-virus and other

utility software, are among the least expensive.

Even software available for download at no

charge can be found in retail pirate outlets.

The notion that promoting open source software

will eliminate software piracy is also erroneous.

Increasingly, computers have been shipped with

the option of being pre-installed with open source

operating systems and office productivity suites

as an alternative to their commercial software

equivalents. This does not mean, however, that

these computers will not at some point in their life

cycle contain pirated software. In fact, some

studies1 indicate that a high percentage of

computers shipped with open source solutions

may eventually be replaced with pirated software,

a pattern that is also seen in computers that are

not shipped with open source software.

Both open source and commercial software

products are predicated on strong copyright

protection. Open source

software products, like their

commercial counterparts, set

forth licensing terms and

conditions that dictate how

these programs may be

utilized, modified, and

distributed. Moreover, the

increased use of certain open source products

does not necessarily mean that consumers or

businesses will use these products in lieu of

commercial options. On the contrary, it is quite

common to see open source and commercial

solutions being used in the same environment,

often in a complementary fashion. A user’s

reliance on an open source operating system, for

example, does not mean that he will forego the

use of commercial applications on that operating

system. These applications, in turn, must

continue to be protected against piracy.

Piracy can also manifest itself with open source

software in a different form. Just as the lack of

respect of intellectual property lead to

commercial software products being pirated

through illegal copying, similar mindsets may

also lead to the source code of open source

software to be pirated by unscrupulous

developers – by incorporating open source code

within the code of proprietary solutions in a

manner contrary to the governing open source

license, and potentially passing off copied code

as their own. Ignoring the terms of an open

source license is also piracy.

Software piracy is therefore not a problem that will

be eradicated through the increased use of open

source software. While open

source solutions may provide

cost benefits to consumers in

certain instances (as discussed

earlier in the first part of this

series of articles), open source is

not by definition the most

appropriate or the cheapest

option for consumers in every instance. At its root,

Governments, especially in developing economies,

would benefit from bringing about a change in

mindset and attitudes towards piracy, and

encouraging the recognition of the value of

intellectual property and the need to protect

intellectual property as an asset essential to a

country’s information economy. Without a
1 See “Gartner: Piracy driving Linux PC Shipments: at
http://www.infoworld.com/article/04/09/29/HNlinuxpiracy_1.ht
ml and http://www.linuxbusinessweek.com/story/46582.htm.

Software piracy is
therefore not a problem
that will be eradicated

through the increased use
of open source software.

18

Open Source and Commercial Software

fundamental appreciation of the

importance of intellectual

property to a nation’s economic

growth, the mere promotion and

adoption of open source

solutions may not, in and of

itself, lower piracy levels in a

particular country, nor

necessarily create an environment that is conducive

to the growth of a domestic software industry.

Indeed, research2 has shown that countries with the

most robust local software industry also have the

lowest piracy rates. High piracy rates inhibit the

development of a domestic software industry to

create solutions to meet local software needs3. We

will further discuss the issue of local software

industry development in a subsequent section, after

first looking at the issues surrounding digital divide.

Digital Divide

The need to bridge the widening digital divide in

some developing countries has led to the

introduction of initiatives to make low cost

personal computers available to the general

public. Such low cost personal computers are

often offered with the option of being installed

with open source software so as to reduce the

initial cost of owning the computing technology.

Increasingly, commercial software vendors have

also made available low-cost and localized-

functionality versions of their software in support

of such low-cost personal computer initiatives.

In considering a strategy to address the digital

divide, a Government’s agenda

should go beyond the mere

provision of computers to low

income families. Of greater

importance is the need to have

in place a comprehensive

program that will equip such

targeted families with the

necessary information technology and software

literacy skills so as to empower and enable these

individuals to make use of the technology. At the

same time, infrastructural needs also have to be

addressed, for instance, to ensure that there is

adequate and appropriate content and

applications that are relevant to the general public

(e.g. suitable e-government services), and to have

available reliable connectivity for the public to

access such content.

Lessons and best practices drawn from case

studies have illustrated that the challenge of the

digital divide requires a strategic and multilayered

response. As concluded by a report4 that examined

digital divide issues in a number of developing

regions, including Africa, South America, and India,

providing access to technology proved critical, but

the need for access went far beyond mere physical

access to a computer or network connection.

The study concluded that the benefits of such

computers and connections would be lost if users

lacked the knowledge to operate those

technologies effectively. Access should be

considered more broadly in the context of

integrating technology into people’s lives,

according to this study5.

4 See “Spanning the Digital Divide: Understanding and Tackling
the Issues” at http://www.bridges.org/spanning/index.html.
5 Conclusion found at section 4.3 on “Drawing out Lessons and
Best Practices” at
http://www.bridges.org/spanning/chpt4.html#_Toc515100166.

2 See study by PricewaterhouseCoopers, “Contributions of the
Packaged Software Industry to the Global Economy” (page 14)
at http://global.bsa.org/usa/globallib/econ/pwc1999.pdf.
3 Conclusion found at section 5.3 at page 14 of the
PricewaterhouseCoopers’ study.

An effective strategy
to address digital divide

issues should ensure that
all aspects of preparing

the general public for the
information age are

addressed.

19

P
art III

Part III : Policy Concerns – Piracy, Digital Divide and Domestic Industry Development

In keeping with these observations, an effective

strategy to address digital divide issues should

ensure that all aspects of preparing the general

public for the information age are addressed. The

strategy should not, as a first step, be focused

solely on the provision of low-cost computers to

the homes, but rather, should take a holistic and

multi-prong approach covering skills,

connectivity and content to ensure that such

computers would be useful to those who have

access to them.

Domestic Software Industry Development

The information technology and software

industry is regularly viewed as a key strategic

sector for countries to develop and cultivate.

With the wide availability and adoption of

software products from multinational companies,

some Governments have viewed the success of

foreign developers relative to local competitors

as an indication of an unlevel playing field.

Consequently, Governments sometimes feel the

need to create policies that purport to level the

playing field. In this vein, some Governments are

considering procurement preference policies in

favor of local companies. Other Governments

have welcomed the availability of source code

from open source software solutions as a way to

jumpstart their domestic industry. Their desire is

for local players to make use of the available

source code to develop and build their own

software solutions. In regions with strong

histories and cultures of communal settings, a

spirit of sharing and openness may be seen as

the preferable approach to promoting a local

software industry.

While the desire to promote and develop a

domestic software industry is understandable,

Governments need to identify and consider what

inherent background and advantages each

particular country has to build on to create niche

opportunities, and have a clear perspective on

what policies will actually result in the creation of

such an industry. In particular, Governments need

to carefully examine whether promoting one

specific software development model over

another will necessarily bring about the end

benefits desired.

The software industry can be broadly segmented

into off-the-shelf products, customizable

products, custom-built products and embedded

software products. The software solutions that

most consumers use on a daily basis are off-the-

shelf products. Larger organizations also use

customizable products that are tailored to meet

their business operations. For very specialized

requirements, a software product can also be

custom-built for a customer. Embedded software

solutions are typically created in conjunction with

hardware innovation.

In light of the different software industry segments,

Governments promoting and steering the growth

of the domestic software industry should have a

broad understanding of the strengths of their

industry and the appropriate segment to cultivate.

Off-the-shelf products typically generate revenue

from the software, and companies venturing into

this segment need a good understanding of the

mechanics of different software licensing models.

In particular, the General Public License (GPL),

upon which the majority of open source software

is based, has an important caveat on the

commercial exploitation of new software products

that are adapted or evolved from programming

20

code that was previously subject to the GPL.

There is a need to ensure that companies

understand the different business and licensing

models and their constraints, as well as issues

relating to indemnity, warranty and liability related

to the use of software. The same considerations

apply to embedded software.

Where Governments advocate that companies

pursue open source with the desire to develop

the domestic software services industry, there are

indeed some benefits that may be derived for

providers such as system integrators. System

integrators can build on existing code from the

open source community to customize solutions

for customers in the form of

customizable products and

custom-built products.

However, in practice, software

companies in the service-

oriented business are capable

of providing support or other

professional services to the

market based on both the

open source and commercial

software approach. There is little reason for

Governments to ask such companies to focus

their business to only one software model, so

long as the skills and resources are available to

the company.

Another important consideration with the greater

availability and use of open source software is

that the domestic software industry needs to be

much more vigilant about tracking the

incorporation of any external sources of licensed

code within their own open source and

commercial software products. There is value in

exercising prudence in the use of such code and

to conduct regular audits to ensure that a product

that incorporates external source code is used in

a manner that is consistent with any applicable

license, whether open source or commercial6,

thus minimizing potential liabilities.

Governments ultimately need to understand the

upstream and downstream effects of their choices

in formulating policies that aim to cultivate the local

software industry and to help their domestic

companies move up the software development

value chain to become leaders and players in their

chosen fields. For instance, while it is common for

Government funding to be provided to companies

that kick-start open source development efforts,

companies adopting open

source models must eventually

have a revenue stream to be

able to become financially

sustainable. The Government

would not have achieved its

objective of developing its

domestic software industry if

companies developing open

source products are unable to

sustain themselves commercially without

continuous Government funding of open source

projects. Governments should identify and build on

their country’s background and inherent

competitive advantages. In essence, there needs to

be a holistic underlying economic strategy behind

the push to develop a domestic software industry.

Competition Development

The presence of competition in a market has a

Open Source and Commercial Software

6 See International Herald Tribune article at
http://www.iht.com/articles/2004/12/28/business/code.html for
a further discussion on how the use of open source software
may be detected and dealt with, and how liability may
potentially arise in some circumstances.

Governments ultimately
need to understand
the upstream and

downstream effects of
their choices in formulating

policies that aim
to cultivate the local

software industry.

21

P
art III

Part III : Policy Concerns – Piracy, Digital Divide and Domestic Industry Development

direct impact on the efficiency of the companies

operating within the market, and in the long term,

on the benefits that consumers may receive from

the players in the market. For example, it has been

the consistent experience of countries that have

liberalized their telecommunications market that

the incumbent telecommunications operator

quickly becomes more cost-efficient in the face of

more competition, and consumers experience

significant cost savings while obtaining better

service quality7. In the software market, the

availability of open source alternatives competing

with commercial solutions have also made

commercial software vendors more responsive to

consumer needs, delivering

better and more innovative

products and services. As a

public policy goal, a healthy

competitive environment is

desirable, as it brings about

greater market efficiency and

more choices for consumers.

Consequently, companies in

economies that are not subject to the discipline of

market forces may find that there is less incentive

to maintain cost efficiency, and thus these

companies risk becoming complacent.

It is commonly accepted that companies should

be allowed to freely compete with each other to

develop the best and most innovative product or

service, through their own chosen method that

allows them to best deliver their product or

service. At the same time, the Government’s role in

molding the competitive landscape should be

limited to only the most necessary of

circumstances, lest the competitive spirit of the

industry be quelled. Often, the industry (propelled

by consumer demands) is more knowledgeable

than Government policy makers regarding the

direction that the market should take. Further,

experience in many countries has demonstrated

that heavy regulation may stifle the domestic

industry rather than cultivate growth. For instance,

within the United States, in the age of converging

computing, telecommunication and media

industries, the existence of a largely unregulated

Internet and information technology industry has

resulted in explosive growth

and innovation over the past

few decades, particularly when

compared to the regulated

telecommunication and

broadcast industries.

The issue of software choice

often emerges in discussions

relating to competition in the software industry. It

should be noted that, a consumer’s inertia to

change from one software solution to another

can be a factor in determining whether such a

change takes place. The inertia may arise from

the cost of change, and not necessarily from the

inability to change (or the lack of choice). At the

same time, the lapse by a software provider to

continually innovate will result in competitors

replacing the incumbent with better products to

meet the growing needs of consumers. The

intervention by Government policy to pick

winners or to constrain any player or industry

segment goes against the principles of fair

competition and free choice. Such actions will

can discourage and harm the industry and inhibit

As a public policy goal,
a healthy competitive

environment is desirable,
as it brings about greater

market efficiency and
more choices for

consumers.

7 See, for instance, the Closing Statement made at the OECD
Global Conference on Telecommunications Policy for the Digital
Economy (www.oecd.org/dataoecd/52/35/1810903.pdf) and
the paper “Liberalizing Telecommunications: The Asian
Experience” authored by members of the World Bank’s
Research Development Group
(http://rru.worldbank.org/Documents/PapersLinks/1441.pdf).

22

Open Source and Commercial Software

the benefits that may otherwise arise out of

competitive market forces.

Sovereignty

For Governments seeking to implement an

industrial policy aimed at growing a domestic

software industry, a desire for sovereignty and

the avoidance of a dependence on foreign

technology are often motivating factors.

In this regard, it is worthwhile to consider the

history of industrial development. There was a time

when Governments felt the need to build their own

steel industries to meet domestic needs and to

address sovereignty concerns. Today, little thought

is given as to where steel is actually produced, as

long as steel is widely and cheaply available. By the

same token, there was a time when each country

felt the need to have a national airline. However,

after the last financial crisis and economic

downturn, there was a significant consolidation in

the airline industry, and several carriers, including

national carriers, ceased operations.

To draw a possible parallel for the software

industry, one can look to the aircraft

manufacturing industry. The manufacturing of

aircrafts, like the manufacturing of software, is a

specialized skill that can be developed. For many

years, Boeing was the primary provider of

aircrafts to the world, until Airbus was formed

and eventually grew to become a formidable

competitor. Today, airlines around the world

continue to purchase their aircrafts primarily from

these two companies, although there are a

number of smaller aircraft manufacturers. There

are clearly dominant players in this market, but

there is keen competition between the

companies. Looking at the players in the market,

the competitive landscape of the aircraft industry

is significantly more limited than that of the

software industry. However, notwithstanding the

importance of air travel to a country’s economy,

aircrafts continue to be acquired from Boeing or

Airbus rather than nations endeavoring to create

their own domestic aircraft industry, so as to

avoid a dependence of the national airline on a

foreign supplier of aircrafts.

Though there are differences in the aircraft and

software industries, it is still worth pondering the

reasons why countries feel compelled to build a

domestic software industry with the primary

objective of avoiding a dependence on foreign

sources of technology, yet they do not feel

similarly compelled in other areas. In better

understanding some of these reasons, countries

may perhaps be in a position to better capitalize

on their inherent advantages and identify ways to

work with other international players (rather than

isolate the domestic players) in a collaborative

manner for mutual benefit in the long term.

GOVERNMENT RESPONSE

The above discussion illustrates that the policy

concerns facing Governments in this area are

multifaceted and complex. The important lesson

that emerges is that there is no panacea to

address all the challenges faced. Understanding

some of the complexities involved may place us

in a better position to consider the effectiveness

of some strategies that are being considered by

various Governments around Asia.

Part IV : Looking Ahead – Technology Neutrality, Interoperability and Standards

23

I
n this fourth part of our discussion, we will

evaluate issues relating to software procurement

and technology standards currently being

contemplated by a number of Governments. For

decision-makers looking ahead and formulating

policies for the future, there is a need to recognize

the underlying importance and fundamental nature

of software innovation to the success of the

technology industry, especially given that it is

through software that other computing technology

becomes useful and productive.

SOFTWARE PROCUREMENT

PREFERENCES

Factors regarding the desirability of each

software model may lead a Government to

consider adopting policies and strategies that are

aimed at providing an advantage to one software

model over another. Such policies may include a

procurement preference policy or other national

preference policy, e.g., a preference policy for

funding research and development that adopts

any one software model. The ostensible intent of

such policies is perhaps to shift behavior and

attitudes towards a particular software model,

with a view that it will bring about advantages

such as lower costs and wider vendor choice.

There may also be other motivations, such as a

desire to develop an indigenous software

industry and domestic products so as to be free

of a dependence on foreign providers.

It should be recognized from our earlier

discussion that open source and commercial

software each has its strengths, and that it is not

the case that either software model is inherently

superior to the other. Rather than attempting to

force-fit customer requirements through artificial

constraints, the better approach is for the

consumer to have the flexibility to choose the

best product or solution to meet his specific

needs. To ensure that this flexibility of choice

remains available to the consumer and endures

through rapid technological changes, the most

effective and sustainable way is to have free

competition in the market between different

software providers, international and domestic.

Governments should therefore be prudent in

considering any policy that creates a preference in

the marketplace of one software model over

another. In practice, such a preference policy

interferes with free competition in the market

without necessarily bringing about the benefits

that may be expected, e.g. cost savings,

avoidance of vendor dependence1 or advantages

for the domestic software industry2. From the

consumer perspective, having a preference policy

artificially limits the choice of software that can

best meet a customer’s needs in a cost-effective

manner. Preference policies prevent software

providers from competing on equal terms.

Solutions will not be selected based on whether

the product has the best functionality or value for

Part IV : Looking Ahead – Technology Neutrality, Interoperability
and Standards

1 The dependence on a single vendor is not unique to either
software model, or avoided by switching to the other model.
Switching from one open source implementation to another
open source variant involves similar types of costs and time as
switching between different commercial software, or from
commercial software to open source software. Users face the
same deterrent effect in switching, due to the inertia of the
change itself, and not the software platform being adopted.
2 A preference for domestic software companies over
international software can lead the domestic companies to
become complacent and less incentivised to innovate, and
eventually not be sufficiently prepared to be internationally
competitive.

P
art IV

24

Open Source and Commercial Software

BENEFITS OF A FREELY COMPETITIVE MARKET

By not having a preference policy, free competition in the market is maintained. By allowing market

forces to freely operate, the level playing field that results will benefit the industry and consumers

in the long term. For instance:

• software developers (both domestic and international) are motivated to compete at delivering

maximum value, rather than be tempted to or rely on or fear preferential treatment on the basis

of the software development model that they choose to adopt;

• software developers can freely innovate without being preemptively constrained in the way they

can commercialize or license their innovations in the future;

• domestic software vendors can operate within a domestic marketplace that is realistic, allowing

them to better prepare themselves for competition in the global marketplace rather than grow

complacent in a sheltered marketplace;

• customers can have the freedom to choose the software option that gives them the best value

that they can afford; and

• end users can trust that the products that they are required to use have been chosen based on

utility of products and not based on politics.

the customer, but on factors such as the software

model or the origin of software that may not have

any intrinsic implication on the quality, value or

utility of the software. It is counter-productive for a

governmental policy to explicitly stifle competition

if the government’s end goal is to enhance access

to the best technology by

promoting competition and

choice.

Instead, public administrations

should fully preserve their

ability to choose their software

solutions, like any other

product, based on the merits in terms of

functionality, performance, interoperability,

security, value and cost of ownership in relation

to other software solutions available in the

market. An organization procuring software

should state in clear and objective terms the

functionality and requirements that it needs

fulfilled, and allow all vendors, including both

open source and commercial

software vendors, to submit

their proposals to the

organization for consideration.

The specifications should

contain criteria such as the

functionality, security

requirements and

performance characteristics that the user needs,

rather than stipulate the name of specific

Public administrations
should fully preserve their

ability to choose their
software solutions, like

any other product, based
on the merits.

25

P
art IV

Part IV : Looking Ahead – Technology Neutrality, Interoperability and Standards

products or how the software should be

developed or licensed. Each instance of

procurement should be evaluated on its own,

taking into total consideration the specific needs,

requirements and environment where the

software is to be used.

Fair and open competition, not Government-

mandated preferences, should determine which

products earn the confidence of consumers,

including Government entities. Preference

policies will stifle innovation that is essential to

ensuring the growth of the software industry.

INTEROPERABILITY AND TECHNOLOGY

STANDARDS

The need to promote interoperability is often

cited as a motivation behind efforts to promote a

particular software development model. Rather

than having a preference policy, taking a long

term perspective, a more effective approach to

achieving interoperability is to develop a good

understanding of technology standards, and

have a suitable strategy to adopt interoperable

standards. This will better

achieve the desired policy

objectives.

Technology standards play an

important role in fostering

healthy competition in

hardware and software solutions. They facilitate

interoperability to provide a customer with the

ability and flexibility to choose from a range of

innovative software products to meet his need.

Where customized products are acquired, it is

similarly important for such products to be

designed to be interoperable with other existing

solutions or future additions so that they do not

quickly become obsolete. Standards are

particularly important for the public sector due to

the need for better communication between

government and citizens, and between

government agencies (intra and inter-

governmental). Standards also allow archival and

legacy system problems to be better addressed

by providing continuity and minimize the risk of

fragmentation of the market into technological

solutions that cannot work together.

Technology standards are typically documented

in written specifications that enable developers of

software, hardware and services to make and

distribute products or components that work with

one another within a given context. This

interoperability can take the form of information

exchange (e.g. protocols or file formats), task

performance (application programming

interfaces – APIs) and other functions that allow

systems and people to collaborate effectively.

Whole products are generally not designated as

standards, but instead, the interfaces and

functions of a product, e.g. the way it reads and

write data, or the steps it takes

to perform certain operations,

are what may be designated

as standards. Based on the

standards, different suppliers

can develop their own

implementations of a

standard, thus giving consumers a choice.

Technology standards are important to the

industry as they typically solve problems that cut

across the industry and are beyond the ability of a

single vendor to address. Different vendors work

together to create standards that can solve the

Technology standards
play an important role in

fostering healthy
competition in hardware
and software solutions.

26

problem. For example, if each digital camera

equipment vendor adopts its own data format for

storage, a software vendor creating image editing

software will need to cater for each variant of the

data format of the hardware. The standardization

of formats in such a scenario not only makes it

easier for the software vendor in having to deal

with multiple formats, but also for hardware

vendors to introduce new standards-compliant

equipment without the need to separately work

with the software vendor to ensure that the new

equipment is supported by the software. Similarly,

alternative software solutions can be introduced

without the new software vendor having to work

with individual hardware vendors. Standards-

compliant domestic products also find themselves

more readily accepted by the global market in

areas where established standards are already in

use. Good standards are neutral and serve the

needs of both small and large companies, as well

as foreign and domestic companies.

Voluntary Approach

Voluntary processes have proven to be the most

effective means of fueling innovation through

standards. The marketplace, responding to

customer demands, is in the best position to

determine the appropriate timing for the

development and promotion of a standard. It

allows suppliers to quickly respond to industry

and customer needs by developing standards

that most effectively address the interoperability

issues.

Government-mandated standards in the

technology industry can potentially have

unintended consequences. Such mandated

standards may unnecessarily freeze the

development of new technologies and constrain

the market’s ability to reap the benefits of quickly

evolving technologies. Inappropriately mandated

standards may also disadvantage certain players

competing in the market rather than create a level

playing field. Premature adoption of standards

that are not yet ready may create obstacles and

hindrances to the market acceptance and

penetration of the standards, and may preclude a

multi-faceted competitive environment from

being created. It is recognized however that there

are limited situations where standards may need

to be mandated in the public interest, e.g. with

respect to technology standards as they relate to

public health and safety issues (e.g. aviation,

medical equipment and cellular emission).

The success of a standard is measured by

whether it ultimately solves the problem for which

it is intended3. A standard may be developed and

evolved through a variety of dynamic processes

that are voluntary and responsive to market

demands. The method of development is not the

critical factor that determines a standard’s

success.

OPEN STANDARDS

There are different forms of standards under the

umbrella of technology standards, e.g. de facto

standards, de jure standards, product standards,

proprietary standards, etc. “Open standards” are

one type of technology standards that have

garnered interest in relation to achieving

widespread interoperability. Governments can

play an important role in advancing open

Open Source and Commercial Software

3 For instance, a standard for document viewing may not be
ideal in the scenario where document editing is required.
However, the success of the document viewing standard should
be measured by how well the standard allows documents to be
viewed and not how well it allows editing.

27

P
art IV

Part IV : Looking Ahead – Technology Neutrality, Interoperability and Standards

CHARACTERISTICS OF OPEN STANDARDS

While there is no universally accepted definition of that term, all open standards have the following

common characteristics:

• Open standards are published without restriction (e.g. potential implementers are not restricted

from accessing the standard) in electronic or tangible form, and in sufficient detail to enable a

complete understanding of the standard’s scope and purpose;

• Open standards are publicly available without cost or for a reasonable fee for adoption and

implementation by any interested party;

• Where there are any patent rights necessary to implement open standards, such rights are made

available by those developing the specification to all implementers on reasonable and non-

discriminatory (RAND) terms, either with or without the payment of a reasonable royalty fee; and

• Open standards are regularly developed, maintained, approved or ratified by consensus, in a

market driven standards-setting organization that is open to all interested and qualified

participants. Standards can also develop by consensus in the marketplace.

standards. Government policies that support the

implementation or adoption of open standards

where open standards exist and are broadly

supported by the industry will improve

interoperability and benefit Governments and

consumers on the whole. On the other hand,

Governments should avoid policies that

inadvertently discourage the development and

adoption of broad-based standards, either by

mandating standards or reducing the economic

incentive for the industry to participate in the

standards process. Encouraging domestic

software products to be

developed in accordance with

internationally accepted open

standards can also make such

products more readily

accepted in the global

marketplace.

Open Source Distinguished from Open

Standards

It should be noted, however, that open standards

are not synonymous with open source software,

and do not exist only by virtue of open source

software. While an open standard is a technical

specification (i.e. a written description), open

source software is software that may be used to

implement an open standard in a particular

product or service. Whether a standard qualifies

as “open” has nothing to do with the

development and licensing

model of the software used to

implement that standard.

Open standards are neutral

with regards to the software

model – it is equally feasible

“Open standards” are
one type of technology

standards that have
garnered interest in relation

to achieving widespread
interoperability.

for an open standard to be implemented in open

source or commercial software. Software

developers writing code individually choose and

decide how they code the internals of the

software. Thus, either open source or commercial

software may well contain elements that are not

based on open standards. Once defined, open

standards are available to any software

developer, and they do not require open source

software, or any other form of software, for their

adoption or use.

Some open source projects are

closely associated with

particular open standards and

some standards have chosen to

release their reference

implementation under open

source licenses. However, the

mere availability of the source code is neither

necessary nor sufficient to make something a

standard, much less an open standard.

Software industry players, regardless of the

software licensing or development model adopted,

recognize the need for interoperability and are

already working together to define such standards.

A mature and balanced understanding of the

purpose and internationally-accepted practice of

standards setting is essential for a dynamic

marketplace and technology industry. A healthy IT

ecosystem based on voluntary standards has

proven best to help customers achieve their

desired goals of interoperability, flexibility and

accessibility. The role of Governments should be to

encourage and facilitate such standards initiatives

and adoption, and raise the general awareness and

incentive for domestic software industry to

participate and collaborate with international

players in this regard.

DRIVING SOFTWARE INNOVATION

Effective adoption of standards at the lower basic

functional level will bring about greater

competition and innovation at the higher

application levels. Standards provide the

technical mechanisms to create greater

portability, scalability, stability

and compatibility. Vigorous

competition among different

but interoperable

technological products will

allow customers to exercise

free choice among innovative

products to select the solution

that best serves their needs.

The undue preference for one particular product,

platform or software licensing or development

model not based on objective criteria such as

open standards inevitably disturbs the

competitive forces that can bring about the best

results for consumers.

The rapid advancement of computing technology

in recent years has prompted the software

industry to rise to the occasion and create better

solutions, bringing about greater benefits to the

community of consumers. Software must

continually innovate and improve so as to remain

relevant. Market based competition is ultimately

the critical driving force in fostering greater

software innovation that is relevant for users and

helping to develop a vibrant software and

technology industry.

28

Open Source and Commercial Software

Effective adoption of
standards at the lower
basic functional level

will bring about greater
competition and

innovation at the higher
application levels.

The Business Software Alliance (www.bsa.org) is the foremost

organization dedicated to promoting a safe and legal digital

world. BSA is the voice of the world’s commercial software

industry and its hardware partners before governments and in

the international marketplace. Its members represent one of the

fastest growing industries in the world. BSA programs foster

technology innovation through education and policy initiatives

that promote copyright protection, cyber security, trade and e-

commerce. BSA members include Adobe, Apple, Autodesk,

Avid, Bentley Systems, Borland, Cadence Design Systems,

Cisco Systems, CNC Software/Mastercam, Dell, Entrust, HP,

IBM, Intel, Internet Security Systems, McAfee, Microsoft,

Minitab, PTC, RSA Security, SAP, SolidWorks, Sybase,

Symantec, Synopsys, The MathWorks, Trend Micro and UGS.

Translations of this document is available on request.

Prepared by:
Mr. GOH Seow Hiong (shgoh@bsa.org), Director of Software Policy for Asia of
BSA, September 2005. Copyright © Business Software Alliance

Business Software Alliance
1150 18th Street, NW, Suite 700
Washington, DC 20036
United States of America
Tel: +1.202.872.5500
Fax: +1.202.872.5501
www.bsa.org/usa/policy

BSA Europe / Middle East / Africa
79 Knightsbridge
London, SWIX 7RB
England, United Kingdom
Tel; +44 (0) 20.7245.0304
Fax: +44 (0) 20.7245.0310
www.bsa.org/eupolicy

BSA Asia
300 Beach Road
25-08 The Concourse
Singapore 199555
Tel: +65.6292.2072
Fax: +65.6292.6369
www.bsa.org/asia-eng/policy

