

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.1

es / 03-90-01 Fecha: diciembre de 2025

NORMA ST. 90

RECOMENDACIONES PARA EL TRATAMIENTO Y LA COMUNICACIÓN DE DATOS DE PROPIEDAD INTELECTUAL
MEDIANTE INTERFACES DE PROGRAMACIÓN DE APLICACIONES (API) PARA SERVICIOS WEB

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

ÍNDICE

INTRODUCCIÓN ... 3
DEFINICIONES Y TERMINOLOGÍA .. 3
NOTACIONES .. 5

Notaciones generales .. 5
Identificadores de normas ... 5

GRADO DE APLICACIÓN .. 5
PRINCIPIOS DE DISEÑO DE UNA API PARA SERVICIOS WEB ... 6
API WEB RESTFUL ... 8

Componentes de los URI .. 8
Códigos de estado .. 9
Principio de selección cuidadosa ... 9
Modelo de recursos ... 10
Compatibilidad con múltiples formatos .. 12
Métodos HTTP .. 13
Patrones de consulta de datos .. 18

Opciones de paginación ... 18
Ordenación ... 18
Expansión .. 19
Proyección ... 21
Número de elementos .. 22
Expresiones de búsqueda complejas ... 24

Control de errores ... 24
Carga útil de error .. 24
ID de correlación .. 26

Contrato de servicio .. 26
Tiempo de espera ... 27
Control del estado ... 27

Versionado por respuesta .. 27

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.2

es / 03-90-01 Fecha: diciembre de 2025

Almacenamiento en caché ... 28
Transferencia gestionada de archivos .. 28

Gestión de preferencias .. 29
Traducción .. 29
Operaciones de larga duración ... 29
Modelo de seguridad ... 30

Normas generales .. 30
Directrices para una gestión de las API segura y resistente a las amenazas ... 30
Cifrado, integridad y no repudio .. 31
Autenticación y autorización ... 32
Disponibilidad y protección frente a amenazas... 33
Peticiones entre dominios .. 33

Modelo de madurez de la API ... 34
API WEB SOAP ... 35

Normas generales ... 35
Esquemas ... 36
Nombres y versiones ... 36
Diseño del contrato de servicio web .. 37
Adhesión de políticas a las definiciones WSDL ... 37
SOAP - Seguridad de servicios web .. 38

FORMATOS DE TIPOS DE DATOS .. 38
CONFORMIDAD .. 39
MATERIAL DE REFERENCIA .. 40

Normas de la OMPI ... 40
Normas y convenciones .. 40
API REST de las Oficinas de PI .. 41
API REST de empresas y directrices de diseño .. 42
Otros ... 42

ANEXOS

ANEXO I LISTA DE NORMAS DE DISEÑO Y CONVENCIONES DE SERVICIOS WEB RESTFUL

ANEXO II VOCABULARIO DE PI RELATIVO A LA ARQUITECTURA REST

ANEXO III DIRECTRICES DE LAS API WEB RESTFUL Y MODELO DE CONTRATO DE SERVICIO

ANEXO IV MEJORES PRÁCTICAS DE ARQUITECTURA DE SEGURIDAD DE ALTO NIVEL

ANEXO V CÓDIGOS DE ESTADO HTTP

ANEXO VI TÉRMINOS DE REPRESENTACIÓN

ANEXO VII PUBLICACIÓN DE LA GESTIÓN DEL CICLO DE VIDA DE LAS API

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.3

es / 03-90-01 Fecha: diciembre de 2025

NORMA ST.90

RECOMENDACIONES PARA EL TRATAMIENTO Y LA COMUNICACIÓN DE DATOS DE PROPIEDAD INTELECTUAL
MEDIANTE INTERFACES DE PROGRAMACIÓN DE APLICACIONES (API) PARA SERVICIOS WEB

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

INTRODUCCIÓN

1. En la presente norma se formulan recomendaciones sobre las interfaces de programación de aplicaciones (API)
para facilitar el tratamiento y el intercambio de datos de propiedad intelectual (datos de PI) de manera armonizada a través
de Internet.

2. La norma tiene como finalidad:

− garantizar la coherencia mediante el establecimiento de principios uniformes de diseño de servicios web;
− mejorar la interoperabilidad de los datos entre los socios de servicios web;
− fomentar la reutilización a través de un diseño unificado;
− promover la flexibilidad en la asignación de nombres a los datos en todas las unidades operativas por medio de

una política de espacio de nombres claramente definida en los recursos de lenguaje extensible de marcado
(XML) asociados;

− promover un intercambio de información seguro;
− ofrecer procesos operativos internos apropiados como servicios de valor añadido que puedan ser utilizados por

otras organizaciones; e
− integrar sus procesos operativos internos y vincularlos dinámicamente con sus asociados institucionales.

DEFINICIONES Y TERMINOLOGÍA

3. A efectos de lo previsto en la presente norma:

− se entenderá por "protocolo de transferencia de hipertexto (HTTP)" un protocolo de aplicación para sistemas de
información distribuidos, colaborativos e hipermedia. HTTP es la base de la comunicación de datos para la World
Wide Web (WWW), y funciona como un protocolo de petición-respuesta en el modelo de computación orientado
al servicio;

− se entenderá por "interfaz de programación de aplicaciones (API)" un conjunto de componentes de software que
proporcionan una interfaz reutilizable entre diferentes aplicaciones que pueden comunicarse fácilmente para
intercambiar datos;

− se entenderá por "transferencia de estado representacional (REST)" un conjunto de principios de arquitectura en
virtud de los cuales se pueden transmitir datos a través de una interfaz normalizada, a saber, HTTP. REST no
contiene una capa adicional de mensajería y se centra en las normas de diseño para crear servicios sin estado;

− se entenderá por "protocolo simple de acceso a objetos (SOAP)" un protocolo para enviar y recibir mensajes
entre aplicaciones sin tener que afrontar problemas de interoperabilidad. SOAP establece una especificación de
protocolo de comunicación estándar (conjunto de normas) para el intercambio de mensajes basado en XML.
SOAP utiliza diferentes protocolos de transferencia, como el HTTP y el protocolo simple de transferencia de
correo (SMTP). El protocolo estándar HTTP facilita al modelo SOAP la creación de túneles en cortafuegos y
proxies sin necesidad de modificar el protocolo SOAP;

− se entenderá por "servicio web" un método de comunicación entre dos aplicaciones o dispositivos electrónicos a
través de la WWW. Los servicios web son de dos tipos: REST y SOAP;

− se entenderá por "API web RESTful" un conjunto de servicios web basados en el paradigma de arquitectura
REST, que suelen utilizar JSON o XML para la transmisión de datos;

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.4

es / 03-90-01 Fecha: diciembre de 2025

− se entenderá por "API web SOAP" un conjunto de servicios web SOAP, que se basan en SOAP y requieren el
uso de XML como formato de carga útil;

− se entenderá por "lenguaje de descripción de servicios web (WSDL)" una norma del Consorcio World Wide Web
(W3C) que se utiliza con el protocolo SOAP para proporcionar una descripción de un servicio web. Incluye los
métodos que usa el servicio web, sus parámetros y sus medios de localización, entre otras cosas;

− se entenderá por “lenguaje de modelado de API RESTful (RAML)” un lenguaje que permite a los desarrolladores
proporcionar una especificación de su API;

− se entenderá por “especificación de OpenAPI (OAS)” un lenguaje que permite a los desarrolladores proporcionar
una especificación de su API;

− se entenderá por "contrato de servicio" (o contrato de servicio web) un documento en el que se describe la forma
en que el servicio expone sus capacidades en términos de las funciones y los recursos ofrecidos a otros
programas de software mediante una API publicada por el servicio; el término "documentación de la API REST"
se utiliza de forma intercambiable con "contrato de servicio" para las API web RESTful;

− se entenderá por "proveedor de servicios" un software de servicios web que expone un servicio web;
− se entenderá por "consumidor de servicios" la función en tiempo de ejecución que asume un programa

informático cuando accede a un servicio y lo invoca. Una vez que el programa envía un mensaje a una capacidad
de servicio especificada en el contrato de servicio, al recibir la petición, el servicio comienza a procesarla y puede
o no devolver un mensaje de respuesta correspondiente al consumidor de servicios;

− "camel case" hace referencia a la convención de nombres lower camel case (por ejemplo, applicantName) o a la
upper camel case (por ejemplo, ApplicantName);

− “kebab case” se refiere a la convención de nombres en la que todas las palabras se escriben en minúsculas y se
separan con un guion (por ejemplo, a-b-c);

− las "normas abiertas" son normas puestas a disposición del público en general, que se desarrollan (o aprueban)
y se mantienen mediante un proceso de colaboración basado en el consenso. Las normas abiertas facilitan la
interoperabilidad y el intercambio de datos entre los diferentes productos de servicios y son concebidas para ser
adoptadas de forma generalizada;

− el identificador uniforme de recursos (URI) sirve para identificar un recurso y el localizador uniforme de recursos
(URL) es un tipo de URI que incluye la dirección en Internet del recurso;

− una "etiqueta de entidad (ETag)" es un identificador opaco asignado por un servidor web a una versión específica
de un recurso que se encuentra en un URL. Si la representación del recurso en ese URL cambia, se le asigna
un ETag diferente. Los ETag se pueden comparar de forma rápida para determinar si dos representaciones de
un recurso son iguales;

− se entenderá por "registro del servicio" un directorio basado en la red que contiene los servicios disponibles;
− “RMM” se refiere al modelo de madurez de Richardson, que mide la madurez de una API REST con una escala

de 0 a 3; y
− se entenderá por "versionado semántico" un esquema de versionado en el que el número de versión está

compuesto por MAYOR.MENOR.PARCHE. Se podrá lanzar una:

• versión MAYOR, cuando se realizan cambios de API incompatibles con la versión anterior;

• versión MENOR, cuando se agrega una funcionalidad compatible con versiones anteriores; o

• versión PARCHE, cuando se realizan correcciones de errores compatibles con versiones anteriores.

4. De conformidad con las normas de diseño, las palabras clave que figuran a continuación deben interpretarse según
lo dispuesto en el párrafo 8 de la Norma ST.96 de la OMPI, a saber:

− DEBE: o los términos equivalentes REQUERIDO o DEBERÁ, implica que la definición es una exigencia de la
norma;

− NO DEBE: o el equivalente NO DEBERÁ, implica que la definición es una prohibición terminante de la norma;
− DEBERÍA: o el equivalente RECOMENDADO, indica que pueden existir razones válidas para pasar por alto un

punto determinado, pero es preciso considerar plenamente las implicaciones que conlleva;
− NO DEBERÍA: o el equivalente NO RECOMENDADO, indica que pueden existir razones válidas para considerar

como aceptable o incluso útil una actuación concreta, pero es preciso considerar cuidadosamente las
implicaciones que conlleva; y

https://www.wipo.int/documents/d/standards/docs-es-03-96-01.pdf

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.5

es / 03-90-01 Fecha: diciembre de 2025

− PUEDE: o el equivalente OPCIONAL, indica que el punto en cuestión es realmente facultativo, y solo se ofrece
como una opción entre muchas otras.

NOTACIONES

Notaciones generales

5. A lo largo del presente documento se utilizan las siguientes notaciones:

− <>: indica un término descriptivo provisional que, en la aplicación, se sustituirá por un valor específico de
instancia;

− “ ”: indica que el texto entre comillas debe usarse de manera literal en la aplicación;
− { }: indica elementos de aplicación facultativa; y
− El tipo de letra Courier New indica palabras clave o código fuente.

6. Los URL que figuran en la presente norma son simplemente ejemplos y no están activos.

Identificadores de normas

7. Todas las normas de diseño son normativas. Las normas de diseño se identifican mediante el prefijo [XX-nn] o
[XXY-nn].

a) El valor “XX” es un prefijo para clasificar los tipos de normas de la siguiente forma:

− WS para las normas de diseño de las API web SOAP;
− RS para las normas de diseño de las API web RESTful; y
− CS para las normas de diseño de las API web SOAP y de las API web RESTful.

b) El valor "Y" se utiliza solo para las normas de diseño RESTful y proporciona una mayor granularidad en el tipo
de respuesta con el que se relaciona la norma:

− G indica que se trata de una norma general aplicable tanto a los formatos de respuesta JSON como XML;
− J indica que es aplicable al formato de respuesta JSON; y
− X indica que corresponde a un formato de respuesta XML.

c) El valor “nn” indica el número siguiente disponible en la serie de un tipo específico de norma. El número no
indica la posición de la norma, en particular para una norma nueva. Una norma nueva se colocará en el
contexto pertinente. Por ejemplo, el identificador de norma [WS-4] identifica la cuarta norma de diseño de las
API web SOAP. La norma [WS-4] puede ser posicionada entre las normas [WS-10] y [WS-11] en lugar de a
continuación de [WS-3], si fuera esa la posición más adecuada para esa norma.

d) El identificador de norma de una norma eliminada se mantendrá, pero el texto de la norma será sustituido por
"suprimida".

GRADO DE APLICACIÓN

8. La presente norma tiene por objeto orientar a las oficinas de propiedad intelectual (oficinas de PI) y a otras
organizaciones que necesiten gestionar, almacenar, procesar, intercambiar y difundir datos de PI mediante una API web.
Se pretende que la norma simplifique y agilice el desarrollo de las API web de forma armonizada y mejore la
interoperabilidad entre ellas.

9. La norma también tiene por objeto abarcar las comunicaciones entre las oficinas de PI y sus solicitantes o usuarios
de datos, así como las comunicaciones entre las propias oficinas de PI mediante conexiones entre dispositivos y entre
dispositivos y aplicaciones de software.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.6

es / 03-90-01 Fecha: diciembre de 2025

Fig. 1. Grado de aplicación de la norma

10. Asimismo, la presente norma tiene como finalidad proporcionar un conjunto de normas y convenciones de diseño
para las API web RESTful y las API web SOAP; una lista de los recursos de datos de PI que se intercambiarán o
expondrán; y un modelo de documentación o contrato de servicio de la API, que puede utilizarse para las adaptaciones, en
el que se describe el formato de los mensajes, la estructura de datos y el diccionario de datos en formato JSON según la
Norma ST.97 de la OMPI y/o XML conforme a la Norma ST.96 de la OMPI.

11. La norma incluye modelos de contratos de servicio para las API web SOAP, que utilizan WSDL, y para las API web
RESTful, que utilizan RAML y OAS. En los contratos de servicio también se definen o se mencionan los tipos de datos para
las interfaces (véase la sección sobre convenciones de tipos de datos más adelante). En esta norma se recomiendan tres
tipos de interfaces: REST-XML (XSD), REST-JSON y SOAP-XML (XSD).

12. La presente norma no obliga a utilizar:

a) pilas tecnológicas de aplicación específicas y productos disponibles en el mercado (COTS);

b) diseños específicos de arquitectura (por ejemplo, arquitectura orientada a servicios (SOA) o arquitectura
orientada a microservicios (MOA)); y

c) algoritmos específicos, como los algoritmos para el cálculo de ETag, es decir, el cálculo de un identificador
único para una versión específica de un recurso (por ejemplo, utilizado para el almacenamiento en caché).

PRINCIPIOS DE DISEÑO DE UNA API PARA SERVICIOS WEB

13. Tanto las API web RESTful como las API web SOAP han demostrado que pueden satisfacer las demandas de las
grandes organizaciones, así como dar servicio a las pequeñas aplicaciones integradas en la producción. A la hora de elegir
entre RESTful y SOAP, se pueden tener en cuenta los siguientes aspectos:

− La seguridad. Por ejemplo, SOAP incluye un protocolo de seguridad en servicios web (WS-Security), mientras
que REST no especifica ningún patrón de seguridad.

− Las transacciones ACID (Atomicidad, Consistencia, Aislamiento y Durabilidad). Por ejemplo, SOAP cuenta con
el soporte de transacción atómica de servicios web (WS-AT), mientras que REST no tiene un soporte adecuado
para este tipo de transacciones.

− El tipo de arquitectura. Por ejemplo, la arquitectura de microservicios y sin servidores utiliza REST, mientras que
SOA utiliza servicios web SOAP.

− La flexibilidad.

q54331

Móvil
Computadora portátil

Computadora de escritorio

Petición

Respuesta

API WEB B API WEB A

− Patentes
− Marcas
− Dibujos y modelos
− II. GG.
− Otros

Petición

Respuesta

− Presentación
− Tramitación
− Publicación
− Búsqueda
− ...

Móvil
Computadora portátil

Computadora de escritorio

q54331

• Patentes
• Marcas
• Dibujos y modelos
• II. GG.
• Otros

 Presentación
 Tramitación
 Publicación
 Búsqueda
 ...

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.7

es / 03-90-01 Fecha: diciembre de 2025

− Las restricciones de ancho de banda.
− La garantía de entrega. Por ejemplo, SOAP ofrece mensajería segura de servicios web (WS-RM), mientras que

REST no satisface los requerimientos técnicos necesarios.

14. Cuando se diseña una API web es necesario observar los siguientes principios de diseño orientado a servicios:

a) Contrato de servicio estandarizado. La estandarización de los contratos de servicio es el principio de diseño
más importante puesto que los contratos permiten regular y dar coherencia al diseño del servicio. Un contrato
de servicio debe ser fácil de cumplir y de entender. Un contrato de servicio consta de metadatos que describen
la forma en que el proveedor y el consumidor de servicios interactuarán, así como las condiciones en que
ambas partes tendrán derecho a interactuar. Se recomienda que los contratos de servicio incluyan:

− Requerimientos funcionales: información sobre la funcionalidad que proporciona el servicio y los datos
que devuelve, o, por lo general, una combinación de ambos elementos.

− Requerimientos no funcionales: información sobre la responsabilidad de los proveedores de prestar la
funcionalidad y/o los datos del servicio, así como la responsabilidad prevista de los consumidores de esos
datos y lo que tendrán que ofrecer a cambio. Por ejemplo, la disponibilidad del consumidor, la seguridad
y otras consideraciones relativas a la calidad del servicio.

b) Servicios débilmente acoplados. Los clientes y los servicios deben evolucionar de forma independiente. La
aplicación de este principio de diseño requiere:

− Versionado de servicios. Los consumidores vinculados a una versión de una API web no deben estar
expuestos a interrupciones inesperadas debido a cambios incompatibles de la API.

− Un contrato de servicio independiente de las especificaciones de la tecnología.

c) Abstracción del servicio. Los detalles de implementación del servicio deben estar ocultos. El diseño de la API
debe ser independiente de las estrategias compatibles con el servidor. Por ejemplo, para el servicio web REST,
el modelo de recursos de la API debe estar desacoplado del modelo de entidad en la capa de persistencia.

d) Servicios sin estado. Los servicios deben ser ampliables.

e) Reutilización de servicios. Una API bien diseñada debe proporcionar servicios reutilizables con contratos
genéricos. La presente norma prevé un modelo de contrato de servicio para ese propósito.

f) Autonomía de servicios. Los límites funcionales del servicio deben estar bien definidos.

g) Descubrimiento de servicios. Los servicios deben ser descubiertos e interpretados eficazmente.

h) Composición de servicios. Los servicios pueden ser parte de otros servicios.

i) Utilización de normas como fundamento. Las API deben seguir las normas del mercado (como IETF, ISO y
OASIS) según corresponda, y darles prioridad por defecto con respecto a las soluciones optimizadas a nivel
local.

j) Principio de selección cuidadosa. No es necesario aplicar todas las normas de diseño de la API. Deben
elegirse en función de cada caso concreto.

15. Además, sobre todo en lo que respecta a las API web RESTful, deben observarse los siguientes principios:

a) Cualidad de poder ser almacenadas en memoria caché. Las respuestas indican explícitamente si pueden ser
almacenadas en memoria caché.

b) Identificación de recursos en las peticiones. Los recursos individuales se identifican en las peticiones, por
ejemplo, mediante el uso de los URI en los servicios web REST. Los propios recursos son conceptualmente
separados de las representaciones que se devuelven al cliente.

c) Hipermedia como el motor del estado de la aplicación (HATEOAS). Tras haber accedido a un URI inicial para la
aplicación REST, como cuando una persona accede a la página de inicio de un sitio web, un cliente de REST
debería poder utilizar los enlaces proporcionados por el servidor de forma dinámica para descubrir todas las
acciones y los recursos de que dispone.

d) Manipulación de recursos a través de representaciones. Cuando un cliente tiene una representación de un
recurso, incluido cualquier metadato adjunto, dispone de suficiente información para modificar o eliminar el
recurso.

e) Mensajes autodescriptivos. Cada mensaje incluye metadatos suficientes para describir cómo procesar su
contenido.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.8

es / 03-90-01 Fecha: diciembre de 2025

f) Las API web deben seguir la semántica de HTTP, incluidos sus métodos y errores.

g) Disponible al público. La API se diseña para que sea posible acceder a ella desde la Internet pública si más
adelante se desea, aunque no sea la intención inicial.

h) Autenticación común. Conviene utilizar un patrón común de autenticación y autorización, preferiblemente
basado en los componentes de seguridad existentes, a fin de no tener que buscar una solución a medida para
cada API.

i) Mínimo privilegio. Debe asignarse a los consumidores de la API el mínimo grado de acceso y autorización
necesario para realizar las funciones solicitadas.

j) Máxima entropía. Conviene que la aleatoriedad de las credenciales de seguridad sea la máxima posible
mediante el uso de claves de API en lugar de nombres de usuario y contraseñas a efectos de autorización de la
API, ya que las claves de API proporcionan una superficie de ataque más desafiante para los posibles
ciberdelincuentes.

k) Rendimiento frente a seguridad. Conviene alcanzar un equilibrio entre el rendimiento y la seguridad en lo que
respecta a la vida útil de las claves y los gastos generales de cifrado y descifrado.

API WEB RESTFUL

16. Una API web RESTful permite a los sistemas de petición acceder y manipular representaciones textuales de los
recursos web mediante un conjunto uniforme y predefinido de operaciones sin estado.

Componentes de los URI

17. Las API web RESTful utilizan los URI para direccionar los recursos. De conformidad con la Norma RFC 3986, la
sintaxis de los URI es la siguiente:

URI = <esquema> "://" <autoridad> "/" <ruta> {"?" consulta}

autoridad = {infousuario@}anfitrión{:puerto}

Por ejemplo, https://wipo.int/api/v1/patents?sort=id&offset=10
 ______/______/___________/_________________/
 | | | |

 esquema autoridad ruta parámetros de consulta

18. En la ruta del URI se utiliza la barra, "/", para indicar la relación jerárquica entre los recursos. No obstante, la ruta no
debe terminar con una barra, ya que esta no proporciona ningún valor semántico y puede llevar a confusión.

[RSG-01] DEBE usarse la barra, "/", en la ruta del URI para indicar la relación jerárquica entre los recursos,
pero la ruta NO DEBE terminar con una barra.

19. En las URI se distingue entre mayúsculas y minúsculas, excepto en el caso del esquema y el anfitrión. Por ejemplo,
mientras que https://wipo.int/api/my-resources/uniqueId y https://wipo.INT/api/my-
resources/uniqueId son el mismo URI, https://wipo.int/api/my-resources/uniqueid es diferente. En
cuanto a los nombres de los recursos, las convenciones kebab case y lower camel case garantizan una buena legibilidad y
asignan los nombres a las entidades en los lenguajes de programación con una simple transformación. Para los parámetros
de consulta debe usarse la convención lower camel case. Por ejemplo,
https://wipo.int/api/v1/inventors?firstName=John. Los nombres de los recursos y los parámetros de
consulta distinguen mayúsculas de minúsculas y pueden abreviarse.

20. Una API web RESTful puede tener argumentos:

− en el parámetro 'consulta'. Por ejemplo, /inventors?id=1;
− en el parámetro 'ruta' del URI. Por ejemplo, /inventors/1; y
− en la carga útil de una petición JSON.

21. Salvo los tipos de argumento referidos, que forman parte del URI, un argumento puede formar parte también de la
carga útil de la petición.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.9

es / 03-90-01 Fecha: diciembre de 2025

Ejemplo de carga útil de solicitud JSON

POST https://wipo.int/api/v1/inventors

 Request body:

{
 "firstName": "John"
}

[RSG-02] Los nombres de los recursos DEBEN seguir un patrón de nomenclatura coherente.

[RSG-03] DEBERÍA utilizarse la convención kebab case para los nombres de los recursos en la petición, que
PUEDEN ser abreviados.

[RSG-04] Los parámetros de consulta DEBEN seguir un patrón de nomenclatura coherente.

[RSG-05] DEBERÍA utilizarse la convención lower camel case para los parámetros de consulta, que PUEDEN
ser abreviados.

22. Un punto final de una API web debe ajustarse a la Norma RFC 3986 del Grupo de Tareas sobre Ingeniería de
Internet (IETF) y evitar posibles conflictos con los URL de las páginas del sitio web alojado en el dominio raíz. Una API web
requiere un punto de entrada exacto para consolidar todas las peticiones. En general, hay dos patrones para definir los
puntos finales:

− como el primer segmento de la ruta del URI. Por ejemplo: https://wipo.int/api/v1/; y
− como subdominio. Por ejemplo: https://api.wipo.int/v1/.

[RSG-06] El patrón del URL para una API web DEBE contener la palabra ‘api’ en el URI.

23. Los parámetros matriciales son indicativos de una API compleja con múltiples niveles de recursos y subrecursos, lo
que se opone a los principios de diseño orientado a servicios anteriormente definidos. Además, los parámetros matriciales
no son estándares, ya que se aplican a un elemento concreto de la ruta, mientras que los parámetros de consulta afectan a
la petición en su conjunto. Un ejemplo de parámetros matriciales es el siguiente:
https://api.wipo.int/v1/path;param1=value1;param2=value2.

[RSG-07] NO DEBEN utilizarse parámetros matriciales.

Códigos de estado

24. Una API web debe aplicar sistemáticamente códigos de estado HTTP según se describe en los documentos RFC
del IETF. Deben utilizarse los códigos de estado HTTP que figuran en la lista de códigos de estado HTTP estándares
(como se define en la RFC 9110 y está registrado por la IANA) incluida en el anexo V.

[RSG-08] Una API web DEBE aplicar sistemáticamente códigos de estado HTTP según se describe en los
documentos RFC del IETF.

[RSG-09] Las API web DEBERÍAN utilizar los códigos recomendados en el Anexo V para clasificar los errores.

Principio de selección cuidadosa

25. Un contrato de servicio debería ser flexible con respecto a parámetros inesperados (en la petición, mediante los
parámetros de consulta), y generar un error en caso de que los valores de los parámetros esperados no estén bien
definidos.

[RSG-10] Si la API detecta valores de entrada incorrectos, DEBE devolver el código de estado HTTP 400 Bad
Request. La carga útil de error DEBE indicar el valor incorrecto.

[RSG-11] Si la API detecta nombres sintácticamente correctos de argumentos no esperados (en la petición o
en los parámetros de consulta), DEBERÍA ignorarlos.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.10

es / 03-90-01 Fecha: diciembre de 2025

[RSG-12] Si la API detecta valores válidos que requieren funcionalidades no admitidas por el servidor, DEBE
devolver el código de estado HTTP 501 Not Implemented.

Modelo de recursos

26. Un modelo de datos de PI debe dividirse en contextos delimitados conforme a un enfoque de diseño basado en el
dominio. Cada contexto delimitado debe ser asignado a un recurso. De acuerdo con los principios de diseño, el modelo de
recursos de una API web debe estar desvinculado del modelo de datos. Una API web debe diseñarse como una jerarquía
de recursos destinada a aprovechar la naturaleza jerárquica del URI para establecer una estructura (asociación,
composición o agregación), en la que cada nodo sea un recurso simple (único) o un conjunto de recursos.

27. En ese modelo jerárquico de recursos, los nodos de la raíz se denominan ‘nodos de nivel superior’ y los recursos
anidados ‘subrecursos’. Los subrecursos deben utilizarse únicamente para composiciones, es decir, recursos que no
pueden ser de nivel superior, ya que, de lo contrario, habría múltiples formas de recuperar las mismas entidades. Esos
subrecursos, que implican asociación, se denominan subcolecciones. Las demás estructuras jerárquicas, a saber, la
asociación y la agregación, deberían evitarse a fin de que no se creen API complejas ni se dupliquen las funciones.

28. El punto final siempre determina el tipo de respuesta. Por ejemplo, el punto final
https://wipo.int/api/v1/patents siempre devuelve respuestas relativas a los recursos sobre patentes. El punto
final https://wipo.int/api/v1/patents/1/inventor siempre devuelve respuestas relativas a los recursos del
inventor. Sin embargo, el punto final https://wipo.int/api/v1/inventors no está permitido porque los recursos
del inventor no pueden ser independientes.

29. Solo deben utilizarse recursos de nivel superior, es decir, con un nivel como máximo, puesto que, de otro modo, la
implementación de esas API sería muy compleja. Por ejemplo, debería utilizarse
https://wipo.int/api/v1/patents?inventorId=12345 en lugar de
https://wipo.int/api/v1/inventors/12345/patents.

[RSG-13] Una API web DEBERÍA utilizar únicamente recursos de nivel superior. Si hay subrecursos, deben ser
colecciones e implicar una asociación. Una entidad debe ser accesible como recurso de nivel
superior o como subrecurso, pero no por ambas vías.

[RSG-14] Si un recurso puede ser independiente, DEBE ser un recurso de nivel superior; de lo contrario será
un subrecurso.

[RSG-15] Para recuperar recursos anidados, DEBEN utilizarse parámetros de consulta en lugar de rutas URL.

30. Las API web pueden ser1: API web CRUD (Crear, Leer, Actualizar y Borrar) y API web Intent. Las API web CRUD
modelan los cambios realizados en un recurso, es decir, las operaciones de crear, leer, actualizar y borrar. Las API web
Intent, en cambio, modelan operaciones administrativas, como renovar, registrar o publicar. Para las operaciones CRUD
deben utilizarse sustantivos y para los nombres de los recursos las API web Intent deben utilizar verbos. Aunque las API
web CRUD son las más utilizadas, se pueden combinar ambos tipos de API. Por ejemplo, el consumidor de servicios podría
utilizar una operación administrativa modelada con una API web Intent, que prepararía la ejecución de una o más
operaciones de servicio de API web CRUD. Con las API web CRUD el solicitante de servicios tiene que preparar los
algoritmos funcionales, mientras que con las API web Intent es el proveedor de servicios el que prepara esos algoritmos.
Las API web CRUD, al contrario que las API web Intent, no son de diseño atómico2.

Por ejemplo, si el propietario de algunas marcas desea renovar los registros que caducarán pronto (el dd-mm-
aaaa), será necesaria una combinación de las siguientes operaciones administrativas:

− recuperar las marcas cuyo registro expira el dd-mm-aaaa; y
− renovar el registro internacional de las marcas recuperadas.

En el caso de las API web CRUD, las operaciones administrativas anteriores se modelarían mediante una
instrucción no atómica, lo que requeriría dos acciones como las siguientes:

1 Otra posibilidad es clasificar las API según su arquetipo. Véase, por ejemplo: REST API Design Rulebook: Designing Consistent
RESTful Web Service Interfaces.

2 Una API web Intent también permite la aplicación del patrón de Segregación de Responsabilidad de Consulta de Comando (CQRS).
CQRS es un patrón que permite utilizar un modelo para actualizar la información y otro diferente para leerla. En muchos casos, sobre
todo en dominios más complicados, el hecho de utilizar el mismo modelo conceptual para los comandos y las consultas deriva en un
modelo más complejo que no resulta útil.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.11

es / 03-90-01 Fecha: diciembre de 2025

Paso 1. Obtener en formato XML3 todas las marcas pertenecientes a John Smith y cuyo registro caducará, por
ejemplo, el 31-12-2018:

GET /api/v1/trademarks? holderFullName=John%20Smith&expiryDate=2018-12-31. HTTP/1.1
Host: wipo.int
Accept: application/xml

Se devuelve, por ejemplo, la siguiente respuesta HTTP:

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<tmk:TrademarkBag xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
TrademarkBag.xsd">
 <tmk:Trademark xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
com:operationCategory="Delete"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
Trademark.xsd">
 ...
 <com:RegistrationNumber>
 <com:IPOfficeCode>IT</com:IPOfficeCode>

 <com:ST13ApplicationNumber>000000000000001</com:ST13ApplicationNumber>
 </com:RegistrationNumber>
 ...
 <com:ExpiryDate>2018-12-31</com:ExpiryDate>
 ...
 </tmk:Trademark>
 ...
</tmk:TrademarkBag>

Paso 2. Presentar una petición de renovación del registro de cada marca recuperada en el paso anterior (se
muestra solo la primera petición de renovación):

POST /api/v1/trademarks/renewalRequests HTTP/1.1
Host: wipo.int
Accept: application/xml
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<tmk:MadridRenewal xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
MadridRenewal.xsd">
 ...
 <com:InternationalRegistrationNumber>000000000000001</com:InternationalRegis
trationNumber>
 ...
</tmk:MadridRenewal>

3 No se presenta un ejemplo correspondiente al formato JSON, dado que la instrucción no está codificada para devolver un formato
específico.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.12

es / 03-90-01 Fecha: diciembre de 2025

El ejemplo anterior también podría modelarse mediante una API web Intent, con una instrucción atómica de
petición de servicio como la siguiente4:

POST /api/v1/trademarks/findAndRenew?holderFullName=john%20smith&expiryDate=2018-
12-31
Host: wipo.int

31. El tipo de API web debería imponer restricciones sobre la forma en que se nombran los recursos para indicar cuál
se está utilizando. Conviene tener en cuenta que los nombres de los recursos podrán estar en otros idiomas si necesitan
ser traducidos por exigencias comerciales.

[RSG-16] Los recursos DEBERÍAN nombrarse con sustantivos para las API web CRUD y con verbos para las
API web Intent.

[RSG-17] Si el nombre del recurso es un sustantivo, DEBERÍA usarse siempre la forma plural. NO DEBERÍAN
utilizarse formas sustantivas irregulares. Por ejemplo, en lugar de /gente debería usarse /personas.

[RSG-18] Los nombres de los recursos, los segmentos y los parámetros de consulta DEBERÍAN estar
compuestos por palabras en inglés, conforme a la grafía del inglés básica del Diccionario de Oxford
(Oxford English Dictionary).

Compatibilidad con múltiples formatos

32. Los distintos consumidores del servicio pueden tener requisitos diferentes en cuanto al formato de los datos de las
respuestas del servicio.El tipo de medio de los datos no debería depender de los propios datos, a fin de que el servicio sea
compatible con diversos tipos de medios. Además, una API web debe ser compatible con la negociación del tipo de
contenido mediante el encabezado de petición HTTP Accept y el encabezado de respuesta HTTP Content-Type, tal y
como exige la Norma RFC 9110 del IETF. Por ejemplo, para solicitar datos en formato JSON el encabezado Accept debe
ser Accept: application/json, y para solicitar datos en formato XML Accept:application/xml. Lo mismo se
aplica al encabezado Content-Type. Una API web puede ser compatible también con otras formas de negociación del
tipo de contenido, como el parámetro de consulta (por ejemplo, ?format) o el sufijo del URL (por ejemplo, .json).

[RSG-19] Una API web DEBERÍA utilizar para la negociación del tipo de contenido el encabezado de petición
HTTP Accept y el encabezado de respuesta HTTP Content-Type.

33. Las API deben ser compatibles con los formatos XML o JSON. En el caso del formato XML, las respuestas deberían
ajustarse a las normas de la OMPI relativas al formato XML, como la Norma ST.96, y en el caso del formato JSON, las
respuestas deberían ajustarse a la Norma ST.97 de la OMPI. Debe haber una correspondencia coherente entre los dos
tipos de formato.

[RSG-20] Una API web DEBE ser compatible con la negociación del tipo de contenido conforme a la Norma
RFC 9110 del IETF.

[RSG-21] DEBE utilizarse el formato JSON cuando no se solicita un tipo de contenido específico.

[RSG-22] Una API web DEBERÍA devolver el código de estado 406 Not Acceptable si no es compatible
con el formato solicitado.

[RSG-23] Una API web DEBERÍA rechazar las peticiones que contengan encabezados de tipo de contenido
inesperado y devolver el código de estado HTTP 406 Not Acceptable o 415 Unsupported
Media Type.

[RSG-24] Las peticiones y respuestas (convención de nombres, formato del mensaje, estructura de datos y
diccionario de datos) DEBERÍAN ajustarse a la Norma ST.96 para XML o la Norma ST.97 para
JSON.

[RSJ-25] Los nombres de las propiedades de los objetos JSON DEBERÍAN proporcionarse en la convención
lower camel case (ejemplo: applicantName).

[RSX-26] Los nombres de los componentes XML DEBERÍAN proporcionarse en la convención upper camel
case.

4 Se ha eliminado el elemento InternationalRegistrationNumber en la carga útil para referirse a todos los números de registro
internacional. No debe utilizarse la ST.96 ni flexibilizarse, si bien el ejemplo presentado amplía los casos de uso permitidos por la
ST.96.

https://wipo.int/api/v1/findAndRenew?applicantFullName=john

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.13

es / 03-90-01 Fecha: diciembre de 2025

[RSG-27] Una API web DEBE ser compatible como mínimo con el formato XML o JSON.

Métodos HTTP

34. Los métodos HTTP son un tipo de función proporcionada por un contrato uniforme para el procesamiento de los
identificadores y datos de recursos. Los métodos HTTP deben utilizarse para lo que fueron diseñados, conforme a la
semántica normalizada especificada en las normas RFC 9110 y RFC 5789 del IETF, a saber:

− GET – recuperar datos
− HEAD – similar a GET pero sin una carga útil de respuesta
− POST – enviar datos nuevos
− PUT – actualizar
− PATCH – actualizar parcialmente
− DELETE – borrar datos
− TRACE – realizar pruebas de eco
− OPTIONS – consultar los verbos compatibles con el servidor para un determinado URL

35. El contrato uniforme establece un conjunto de métodos para ser utilizados por los servicios dentro de una
determinada colección o inventario. Los métodos HTTP de creación de túneles pueden ser útiles cuando los encabezados
HTTP son rechazados por algunos cortafuegos.

36. Los métodos HTTP pueden seguir el principio de selección cuidadosa, que establece que solo se debe implementar
la funcionalidad necesaria para el escenario de uso previsto. Algunos proxies solo son compatibles con los métodos POST y
GET. Para sortear esa limitación, las API web pueden utilizar un método POST con un encabezado HTTP personalizado
para crear un túnel sobre el método HTTP que se quiera usar.

[RSG-28] Los métodos HTTP DEBEN limitarse a los métodos estándares POST, GET, PUT, DELETE, OPTIONS,
PATCH, TRACE y HEAD, conforme a las especificaciones de las normas RFC 9110 y RFC 5789 del
IETF.

[RSG-29] Los métodos HTTP PUEDEN seguir el principio de selección cuidadosa, que establece que solo se
debe implementar la funcionalidad necesaria para el escenario de uso previsto.

[RSG-30] Algunos proxies solo son compatibles con los métodos POST y GET. Para sortear esa limitación, las
API web pueden utilizar un método POST con un encabezado HTTP personalizado para crear un
túnel sobre el método HTTP que se quiera usar. DEBERÍA utilizarse el encabezado HTTP
personalizado X-HTTP-Method.

[RSG-31] Si un método HTTP no es admitido por el recurso de destino, DEBERÍA devolverse el código de
estado HTTP 405 Method Not Allowed.

37. En algunos casos de uso, se debería poder admitir múltiples operaciones a la vez.

[RSG-32] Una API web DEBERÍA admitir operaciones por lotes (también conocidas como operaciones
masivas) en lugar de múltiples peticiones individuales con el fin de reducir la latencia. Se debería
utilizar la misma semántica para los métodos HTTP y los códigos de estado HTTP. La carga útil de
respuesta DEBERÍA contener información sobre todas las operaciones por lotes. Si se producen
múltiples errores, la carga útil de error DEBERÍA contener información sobre todas las incidencias
(en el atributo details). Todas las operaciones masivas DEBERÍAN ser ejecutadas mediante una
instrucción atómica.

GET

38. Según la Norma RFC 9110 del IETF, el protocolo HTTP no establece a priori ningún límite para la longitud de un
URI. Por otra parte, los servidores deberían evitar depender de longitudes de URI que excedan los 255 bytes, ya que
algunas implementaciones de clientes o proxies más antiguos quizá no admitan correctamente esas longitudes. En caso de
que se supere dicho límite, se recomienda utilizar consultas con nombre. Otra posibilidad es especificar un conjunto de
normas que establezcan la forma de cambiar de GET a POST. De conformidad con la Norma RFC 9110 del IETF, una
petición GET debe ser idempotente, lo que significa que su respuesta será la misma con independencia del número de
veces que se ejecute la petición.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.14

es / 03-90-01 Fecha: diciembre de 2025

[RSG-33] Para un punto final que extrae un solo recurso, si este no se encuentra, el método GET DEBE
devolver el código de estado 404 Not Found. En el caso de los puntos finales que devuelven listas
de recursos, simplemente devolverán una lista vacía.

[RSG-34] Si un recurso es recuperado con éxito, el método GET DEBE devolver 200 OK.

[RSG-35] Las peticiones GET DEBEN ser idempotentes.

[RSG-36] Cuando la longitud del URI excede los 255 bytes, DEBERÍA utilizarse el método POST en lugar del
método GET debido a las limitaciones prácticas de este, o bien crear consultas con nombre si es
posible.

HEAD

39. Los clientes pueden utilizar HEAD cuando necesiten información sobre una operación. Utilizando HEAD se obtiene el
mismo encabezado HTTP que se obtendría si se hiciera una petición GET, pero sin el cuerpo. Esto permite al cliente
conocer la información almacenada en caché, así como el tipo de contenido y el código de estado que se devolverá. Una
petición HEAD DEBE ser idempotente según la Norma RFC 9110 del IETF.

[RSG-37] Las peticiones HEAD DEBEN ser idempotentes.

[RSG-38] Algunos proxies solo son compatibles con los métodos POST y GET. Una API web DEBERÍA admitir
un encabezado de petición HTTP personalizado para sustituir el método HTTP con el fin de sortear
esa limitación.

POST

40. Los clientes pueden utilizar POST para crear un recurso.

Por ejemplo, la siguiente petición HTTP envía una solicitud de patente.

Ejemplo con cargas útiles en formato XML según la Norma ST.96

El cliente envía la petición de solicitud de patente en formato XML:

POST /v1/patents/applications HTTP/1.1
Host: wipo.int
Accept: application/xml
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="pl" com:receivingOffice="ST" com:st96Version="V5_0"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody_V5_0.xsd">
 ...
</pat:ApplicationBody>

Se devuelve la siguiente respuesta HTTP para indicar que la solicitud de patente se ha enviado correctamente:

HTTP/1.1 201 Created
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="pl" com:receivingOffice="ST" com:st96Version="V5_0"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody_V5_0.xsd" applicationBodyStatus=”pending”>
 ...

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.15

es / 03-90-01 Fecha: diciembre de 2025

</pat:ApplicationBody>

Ejemplo con cargas útiles en formato JSON según la Norma ST.97

El cliente envía la petición de solicitud de patente en formato JSON:

POST /v1/patents/applications HTTP/1.1
Host: wipo.int
Accept: application/json
Content-Type: application/json
{
 " applicationBody ": {
 ...
 }
}

Se devuelve la siguiente respuesta HTTP para indicar que la solicitud de patente se ha enviado correctamente:

HTTP/1.1 200 OK
Content-Type: application/json
{
 " applicationBody ": {
 "applicationBodyStatus" : "pending",
 ...
 }
}

[RSG-39] Las peticiones POST NO DEBEN ser idempotentes de acuerdo con la Norma RFC 9110 del IETF.

[RSG-40] Si el recurso se creó correctamente, el encabezado HTTP Location DEBERÍA contener un URI
(absoluto o relativo) que apunte al recurso creado.

[RSG-41] Si el recurso se creó correctamente, la respuesta DEBERÍA contener el código de estado 201
Created.

[RSG-42] Si el recurso se creó correctamente, la carga útil de respuesta DEBERÍA contener por defecto el
cuerpo del recurso creado, para que el cliente pueda utilizarlo sin hacer otra llamada HTTP.

PUT

41. Los clientes pueden utilizar PUT para reemplazar por completo un recurso existente. Se debe respetar la
idempotencia del método PUT. Una petición PUT tiene una semántica de actualización (como se especifica en la Norma
RFC 9110 del IETF), y una semántica de inserción.

[RSG-43] Las peticiones PUT DEBEN ser idempotentes.

[RSG-44] Si no se encuentra el recurso de destino y el servidor no permite la creación en la URI dada, PUT
DEBE devolver el código de estado 404 Not Found. Si el servidor permite la creación, PUT DEBE devolver el
código de estado 201 Created.

[RSG-45] Si un recurso se actualiza correctamente, PUT DEBE devolver el código de estado 200 OK si se
devuelve el recurso actualizado o 204 No Content si no se devuelve.

PATCH

42. Los clientes pueden utilizar PATCH si requieren una actualización parcial. En ese caso PATCH tiene que ser
idempotente.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.16

es / 03-90-01 Fecha: diciembre de 2025

Por ejemplo, la siguiente petición actualiza solo un idioma de la patente dado el número de esta:

PATCH /api/v1/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
If-Match:456
Content-Type: application/merge-patch+json
{ "languageCode": "en" }

43. PATCH no deben ser idempotente según la Norma RFC 9110 del IETF. Para hacerlo idempotente, la API puede
recurrir a la técnica del bloqueo optimista recomendada en la Norma RFC 5789 del IETF.

[RSG-46] Por defecto, las peticiones PATCH NO DEBEN ser idempotentes.

[RSG-47] Si una API web implementa actualizaciones parciales, PATCH DEBERÍA ser idempotente. Para
conseguirlo, la API PUEDE recurrir a la técnica del bloqueo optimista recomendada en la Norma RFC
5789 del IETF.

[RSG-48] Si un recurso no se encuentra, PATCH DEBE devolver el código de estado 404 Not Found.

[RSJ-49] Si una API web implementa actualizaciones parciales mediante PATCH, DEBE utilizar el formato
JSON Merge Patch para describir el conjunto de cambios parciales, como se especifica en la Norma
RFC 7396 del IETF, utilizando application/merge-patch+json como Content-Type.

DELETE

44. Los clientes pueden usar DELETE para eliminar un recurso. Una petición DELETE debe ser idempotente según la
Norma RFC 9110 del IETF.

[RSG-50] Las peticiones DELETE DEBEN ser idempotentes.

[RSG-51] Si no se encuentra un recurso, DELETE DEBE devolver el código de estado 404 Not Found.

[RSG-52] Si un recurso se elimina correctamente, DELETE DEBE devolver el código de estado 200 OK si se
devuelve el recurso eliminado o 204 No Content si no se devuelve.

TRACE

45. El método TRACE no requiere ninguna semántica de la API y se utiliza para probar y diagnosticar información
conforme a la Norma RFC 9110 del IETF, por ejemplo, para probar una cadena de proxies. TRACE permite al cliente ver lo
que se recibe en el otro extremo de la cadena de petición y utiliza esos datos. Una petición TRACE DEBE ser idempotente
de acuerdo con la Norma RFC 9110 del IETF.

[RSG-53] El destinatario final es el servidor de origen o el primer proxy o puerta de enlace que recibe un valor
del encabezado Max-Forwards de cero en la petición. Las peticiones TRACE NO DEBEN incluir un
cuerpo.

[RSG-54] Las peticiones TRACE DEBEN ser idempotentes.

[RSG-55] El valor del encabezado HTTP Via DEBE servir para rastrear la cadena de petición.

[RSG-56] Para que el cliente pueda limitar la longitud de la cadena de petición DEBE utilizarse el encabezado
HTTP Max-Forwards.

[RSG-57] Si la petición es válida, la respuesta DEBERÍA contener el mensaje completo de la petición en el
cuerpo de la respuesta, con message/http como Content-Type.

[RSG-58] Las respuestas a TRACE NO DEBEN ser almacenadas en caché.

[RSG-59] DEBERÍA devolverse a TRACE el código de estado 200 OK.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.17

es / 03-90-01 Fecha: diciembre de 2025

OPTIONS

46. Los clientes pueden usar OPTIONS cuando necesiten obtener información sobre una API web. El método OPTIONS
no requiere ninguna semántica de la API. Una petición OPTIONS DEBE ser idempotente de acuerdo con la Norma
RFC 9110 del IETF, relativa a los encabezados HTTP personalizados.

[RSG-60] Las peticiones OPTIONS DEBEN ser idempotentes.

47. Es una práctica común de las API web utilizar encabezados HTTP personalizados con "X-" como prefijo común, lo
que no se aprueba ni se recomienda en el documento RFC 6648.

[RSG-61] NO DEBERÍAN utilizarse encabezados HTTP personalizados que empiecen con el prefijo "X-".

[RSG-62] NO DEBERÍAN utilizarse encabezados HTTP personalizados para modificar un método HTTP a
menos que sea para resolver una limitación técnica (véase, por ejemplo, [RSG-39]).

[RSG-63] Los encabezados HTTP personalizados tendrán el formato <organization>-<header name>, y
los nombres de <organization> y <header> DEBERÍAN seguir la convención kebab case.

48. Según los principios de diseño orientado a servicios, los clientes y los servicios deberían evolucionar de forma
independiente. El versionado de servicios lo hace posible. Las implementaciones comunes del versionado de servicios son:
el versionado por encabezado (usando un encabezado personalizado), el versionado por cadena de consulta (por ejemplo,
v=v1), el versionado por tipo de medios (por ejemplo, Accept: application/vnd.v1+json) y el versionado por URI
(por ejemplo, /api/v1/inventors).

[RSG-64] Una API web DEBERÍA admitir un único método de versionado de servicios, como el versionado por
URI (por ejemplo, /api/v1/inventors), el versionado por encabezado (por ejemplo, Accept-
version: v1), o el versionado por tipo de medios (por ejemplo, Accept:
application/vnd.v1+json). NO DEBERÍA utilizarse el versionado por cadena de consulta.

49. De acuerdo con los principios de diseño orientado a servicios, los proveedores y consumidores de servicios también
deben evolucionar de forma independiente. El consumidor de servicios no debería verse afectado por cambios menores
(retrocompatibles) por parte del proveedor de servicios. Por consiguiente, el versionado de servicios debería utilizar solo
versiones mayores. En el caso de las API internas no publicadas (por ejemplo, para el desarrollo y las pruebas) también
pueden utilizarse versiones menores, como las versiones semánticas.

[RSG-65] DEBERÍA seguirse un esquema de numeración de versiones que considere solo el número de
versión mayor (por ejemplo, /v1).

50. Los identificadores de puntos finales de servicio incluyen información que puede variar con el tiempo. Puede que no
sea posible cambiar todas las referencias al punto final desactualizado, lo que puede dar lugar a que el consumidor de
servicios no pueda seguir interactuando con el punto final del servicio. El proveedor de servicios puede devolver una
respuesta de redireccionamiento. El redireccionamiento puede ser temporal o permanente. Los códigos de estado HTTP
posibles son los siguientes:

 Permanente Temporal
Permite la modificación del método
de petición de POST a GET 301 302

No permite la modificación del
método de petición de POST a GET 308 307

Los códigos de estado 301 y 302, al ser más genéricos, son los más aconsejables para aumentar la flexibilidad y evitar
dificultades innecesarias.

[RSG-66] Los contratos de servicio API PUEDEN incluir la función de redireccionamiento del punto final.
Cuando un consumidor de servicios intenta invocar un servicio, es posible que se devuelva una
respuesta de redireccionamiento para indicarle que vuelva a enviar la petición a un nuevo punto final.
Los redireccionamientos PUEDEN ser temporales o permanentes:

− redireccionamiento temporal - mediante el encabezado de respuesta HTTP Location y el código
de estado HTTP 302 Found, conforme a la Norma RFC 9110 del IETF; o

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.18

es / 03-90-01 Fecha: diciembre de 2025

− redireccionamiento permanente - mediante el encabezado de respuesta HTTP Location y el
código de estado HTTP 301 Moved Permanently, de conformidad con el documento RFC
9110 del IETF.

51. Una API, durante su ciclo de vida, pasará por una serie de fases principales: planificación y diseño, desarrollo,
prueba, implementación y retirada. Es preferible que la organización o los proveedores de servicios publiquen su estrategia
de ciclo de vida de la API en lugar de formular recomendaciones sobre el período de tiempo que la API debería permanecer
preferentemente en una fase determinada. En el Anexo VII se presenta un diagrama con los componentes básicos que
definen una estrategia de ciclo de vida.

[RSG-67] Los desarrolladores de API DEBERÍAN publicar las estrategias de ciclo de vida de las API con el fin
de que los usuarios sepan cuánto tiempo se mantendrá una versión.

Patrones de consulta de datos

Opciones de paginación

52. La paginación es un mecanismo que permite a los clientes recuperar datos en páginas. Mediante la paginación se
evita sobrecargar al proveedor de servicios con peticiones de recursos conforme a los principios de diseño. El servidor
debería establecer un tamaño de página por defecto en caso de que el consumidor de servicios no especifique uno. Las
peticiones paginadas pueden no ser idempotentes, dado que una petición paginada no crea una instantánea de los datos.

[RSG-68] Las API web DEBERÍAN ser compatibles con la paginación.

[RSG-69] Las peticiones paginadas PUEDEN NO ser idempotentes.

[RSG-70] Las API web DEBEN utilizar parámetros de consulta para implementar la paginación.

[RSG-71] Las API web NO DEBEN utilizar encabezados HTTP para implementar la paginación.

[RSG-72] DEBERÍAN utilizarse los parámetros de consulta limit=<number of items to deliver> y
offset=<number of items to skip> (limit es el número de elementos que se devolverán
(tamaño de página), y offset es el número de elementos que se saltarán (desplazamiento). Si no
se especifica un límite de tamaño de página, DEBERÍA definirse un valor por defecto —general o por
colección—; el offset por defecto DEBE ser cero “0”.

A continuación se muestra un ejemplo de un URL válido:

https://wipo.int/api/v1/patents?limit=10&offset=20

[RSG-73] Los valores de los parámetros limit y offset DEBERÍAN incluirse en la respuesta.

Ordenación

53. La recuperación de datos puede requerir ordenar los datos en orden ascendente o descendente. También puede
utilizarse un criterio de ordenación multiclave. El orden se establece mediante el uso del parámetro de cadena de consulta
sort. El valor de ese parámetro es una lista de claves de ordenación separadas por comas a las que pueden añadirse
direcciones de ordenación mediante dos puntos ‘:’. Las direcciones de ordenación admitidas son asc para el orden
ascendente o desc para el orden descendente. El cliente puede especificar una dirección de ordenación distinta para cada
clave. Si no se especifica una dirección de ordenación para una clave, el servidor establece una dirección por defecto.

Por ejemplo:

a) Se especifican solo las claves de ordenación:

 sort=key1,key2

key1 es la primera clave y key2 es la segunda, y el servidor establece las direcciones de ordenación por
defecto.

b) Se especifican algunas direcciones de ordenación:

 sort=key1:asc,key2

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.19

es / 03-90-01 Fecha: diciembre de 2025

key1 es la primera clave (orden ascendente) y key2 es la segunda clave (el servidor establece por defecto
la dirección, como para cualquier clave de ordenación sin una dirección especificada).

c) Se especifica la dirección de ordenación para cada clave:

 sort=key1:asc,key2:desc

key1 es la primera clave (orden ascendente) y key2 es la segunda clave (orden descendiente).

54. Para establecer la ordenación por criterios multiatributos, el valor del parámetro de consulta puede ser una lista de
claves de ordenación separadas por comas a las que se puede añadir, mediante dos puntos ':', la dirección de
ordenamiento, con asc para el orden ascendente o desc para el orden descendente.

[RSG-74] Una API web DEBERÍA admitir la ordenación.

[RSG-75] Para establecer criterios multiatributos de ordenación, DEBE utilizarse un parámetro de consulta. El
valor de dicho parámetro será una lista de claves de ordenación separadas por comas a las que se
puede añadir, mediante dos puntos ':', la dirección de ordenamiento, con asc para el orden
ascendente o desc para el orden descendente. En caso de que no se especifique una dirección de
ordenación para una clave, el servidor DEBE establecer una por defecto.

[RSG-76] Las API web DEBERÍAN devolver los criterios de ordenación en la respuesta.

Expansión

55. Un consumidor de servicios puede controlar la cantidad de datos que recibe expandiendo un solo campo a un
mayor número de objetos. Esto suele combinarse con un sistema hipermedia. En lugar de pedir que se incluya el ID de una
entidad vinculada, el solicitante de servicios puede pedir que se expanda la representación completa de la entidad dentro
de los resultados. Las llamadas de servicio pueden utilizar expansiones para obtener todos los datos que necesitan en una
única petición API:

Por ejemplo, si se admite el sistema hipermedia, la siguiente petición HTTP recupera una patente y expande la
variable solicitante de la patente.

Ejemplo con cargas útiles en formato JSON según la Norma ST.97

Recupera una patente a partir de su número5:

GET /api/v1/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
Accept: application/json

La respuesta HTTP es la siguiente:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{

 "patentPublication":{
 "languageCode": "en",
 ...
 "bibliographicData": {
 "st96Version": "V5_0",
 "applicationIdentification": {
 "ipOfficeCode": "XX",
 "applicationNumber": {
 "applicationNumberText": "13797521"
 },
 "inventionSubjectMatterCategory": "Utility",
 "filingDate": "2013-03-12"

5 Patente/PatentNumber.xsd

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.20

es / 03-90-01 Fecha: diciembre de 2025

 },
 patentGrantIdentification": {
 "ipOfficeCode": "XX",
 "patentNumber": "100000000000001"
 },
 ...
 "partyBag": {
 "applicantBag": {
 "applicant": {
 "href":
"https://wipo.int/api/v1/link/to/applicants"
 },
 ...
 }
 }
 },
 ...
 }
}

Si en lugar de la petición anterior se utiliza la petición HTTP que figura a continuación se recupera la información
completa del solicitante de la patente con el número 100000000000001:

GET /api/v1/patents/publications?id=100000000000001&expand=applicant HTTP/1.1
Host: wipo.int
Accept: application/json

La respuesta HTTP es la siguiente:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{
 "patentPublication":{
 "languageCode": "en",
 ...
 "bibliographicData": {
 "st96Version": "V5_0",
 "applicationIdentification": {
 "ipOfficeCode": "XX",
 "applicationNumber": {
 "applicationNumberText": "13797521"
 },
 "inventionSubjectMatterCategory": "Utility",
 "filingDate": "2013-03-12"
 },
 patentGrantIdentification": {
 "ipOfficeCode": "XX",
 "patentNumber": "100000000000001"
 },
 ...
 "partyBag": {
 "applicantBag": {
 "applicant": [
 {
 "sequenceNumber": "001",
 "publicationContact": [
 {
 "name": {
 "personName": …,
 "applicantCategory": "Applicant",
 },
 {

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.21

es / 03-90-01 Fecha: diciembre de 2025

 "sequenceNumber": "002",
 "publicationContact": [
 {
 "name": {
 "personName": …
 }
 }
],
 "applicantCategory": "Applicant",
 },
 {
 "sequenceNumber": "003",
 "publicationContact": [
 {
 "name": {
 "personName": …
 }
 }
],
 "applicantCategory": "Applicant",
 },
 ...
 }
 }
 },
 ... }}

56. Una API web puede ser compatible con la expansión del cuerpo del contenido que se devuelve.

[RSG-77] Una API web PUEDE ser compatible con la expansión del cuerpo del contenido que se devuelve.
DEBERÍA utilizarse el parámetro de consulta expand=<comma-separated list of
attributes names>.

Proyección

57. Una API web debería admitir la proyección de campos, para controlar la cantidad de datos de una entidad que se
devuelven en respuesta a una petición API. La proyección de campo puede reducir el tiempo de respuesta y el tamaño de
la carga útil. Si solo se requieren atributos específicos de los datos recuperados, debe utilizarse un parámetro de consulta
de proyección en lugar de las rutas URL. El parámetro de consulta debería ser: “fields=”<comma-separated list of
attribute names>. Un parámetro de consulta de proyección es más fácil de implementar y puede recuperar múltiples
atributos. Si se admite la proyección, no debería aplicarse el esquema XSD/JSON en la respuesta, ya que esta no será
válida frente al esquema original XSD/JSON.

Por ejemplo, el siguiente mensaje de petición devuelve solo el nombre completo del inventor de la patente
solicitada:

Con cargas útiles en formato XML según la Norma ST.96

Obtiene el nombre completo del inventor de la patente con identificador id12345:

GET
Host: wipo.int
Accept: application/xml

A continuación figura un ejemplo de mensaje de respuesta HTTP:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:Inventor xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.22

es / 03-90-01 Fecha: diciembre de 2025

xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:sequenceNumber="String" com:id="ID1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication_V5_0.xsd">
 <Contact>
 <Name>
 <PersonName>
 <PersonFullName>John Smith</PersonFullName>
 </PersonName>
 </Name>
 </Contact>
</pat:Inventor>

Con cargas útiles en formato JSON según la Norma ST.97

Obtiene el nombre completo del inventor de la patente con identificador6 id12345:

GET
Host: wipo.int
Accept: application/json

A continuación figura un ejemplo de mensaje de respuesta HTTP:

HTTP/1.1 200 OK
Content-Type: application/json
{

"inventor": {
 "sequenceNumber": "001",
 "Contact": [
 {
 "name": {
 "personName": [
 {
 "personFullName": "John Smith"
 }
]
 }
 }
]

}}

[RSG-78] En caso de que una API web admita la proyección, DEBERÍA utilizarse, en lugar de las rutas URL,
un parámetro de consulta con el formato “fields=”<comma-separated list of attribute
names>.

Número de elementos

58. En algunos casos de uso, el consumidor de la API puede estar interesado en el número de elementos de una
colección. Es muy frecuente que esto se combine con la paginación para saber el número total de elementos de la
colección.

Por ejemplo, la petición HTTP que figura a continuación recupera un máximo de 3 publicaciones de patentes,
salta los 4 primeros resultados y debería incluir también en la respuesta el número total de los resultados
disponibles:

6 Common/id.xsd

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.23

es / 03-90-01 Fecha: diciembre de 2025

Ejemplo con cargas útiles en formato XML conforme a la Norma ST.96

GET /api/v1/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/xml

Ejemplo de respuesta HTTP devuelta:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:PatentPublication xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="de" com:st96Version="V5_0"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication_V5_0.xsd">
 ...
</pat:PatentPublication>
<pat:PatentPublication>
 ...
</pat:PatentPublication>
 ...
<pat:PatentPublication>
 ...
</pat:PatentPublication>
<count>100</count>

Ejemplo con cargas útiles en formato JSON según la Norma ST.97

GET /api/v1/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/json

Ejemplo de respuesta HTTP devuelta:

HTTP/1.1 200 OK
Content-Type: application/json
{
 "patentPublication": [
 {
 ...
 },
 {
 ...
 },
 {
 ...
 }
],
 "count": 100
}

59. Una posibilidad es que la API web pueda admitir la devolución del número de elementos de una colección mediante
una función inline, es decir, como parte de la respuesta que contiene la propia colección. Otra opción es que forme parte de
una envoltura de metadatos, fuera del cuerpo principal de la respuesta.

https://wipo.int/api/v1/patents?count=true&limit=3&offset=4
https://wipo.int/api/v1/patents?count=true&limit=3&offset=4

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.24

es / 03-90-01 Fecha: diciembre de 2025

[RSG-79] Las API web DEBEN admitir la devolución del número de elementos de una colección.

[RSG-80] Para permitir la devolución del número de elementos de una colección DEBERÍA utilizarse un
parámetro de consulta.

[RSG-81] DEBERÍA utilizarse el parámetro de consulta count para devolver el número de elementos de una
colección.

[RSG-82] Las API web PUEDEN admitir la devolución del número de elementos de una colección mediante
una función inline, es decir, como parte de la respuesta que contiene la propia colección.

[RSG-83] DEBERÍA utilizarse el parámetro de consulta count=true. Si no se especifica el valor de count,
debería fijarse por defecto en false.

[RSG-84] Si una API web admite la paginación, DEBERÍA permitir la devolución del número de la colección (es
decir, el número total de elementos de la colección) en la respuesta mediante una función inline.

Expresiones de búsqueda complejas

60. Los parámetros de consulta permiten recuperar datos con pocos criterios de búsqueda. Si existe un caso de uso en
el que se tengan que buscar datos mediante expresiones de búsqueda complejas (con múltiples criterios, expresiones
booleanas y operadores de búsqueda), la API debe diseñarse utilizando un lenguaje de consulta más complejo. El lenguaje
de consulta tiene que estar basado en una gramática de búsqueda.

61. El lenguaje de consulta contextual (CQL) es un lenguaje formal para representar las consultas a los sistemas de
recuperación de información, como los motores de búsqueda, los catálogos bibliográficos y la información de las
colecciones de los museos. Basado en la semántica de Z39.507, su objetivo de diseño es conseguir que las consultas
puedan ser leídas y escritas y que el lenguaje sea intuitivo y mantenga la expresión de los lenguajes de consulta más
complejos. Se trata solo de una de las opciones recomendadas para su uso, ampliamente utilizada en el mercado.

[RSG-85] Si una API web es compatible con expresiones de búsqueda complejas, DEBERÍA especificarse un
lenguaje de consulta, como el CQL.

[RSG-86] Un contrato de servicio DEBE especificar la gramática compatible (como los campos, las funciones,
las palabras clave y los operadores).

[RSG-87] DEBE utilizarse el parámetro de consulta ‘q’.

Control de errores

62. Las respuestas de error deberían utilizar siempre el código de estado HTTP apropiado seleccionado de la lista de
códigos de estado HTTP estándares (Norma RFC 7807), que figura en el Anexo V. Cuando el solicitante espera la
respuesta en formato JSON, se devuelven los detalles del error en una estructura de datos común. A menos que el
proyecto lo requiera, no es necesario definir códigos de error específicos de cada aplicación. La información de seguimiento
de la pila y otros datos relacionados con la depuración no deberían aparecer en el cuerpo de la respuesta de error en los
entornos de producción.

Carga útil de error

63. El control de errores se realiza en dos niveles: en el nivel de protocolo (HTTP) y en el nivel de aplicación (carga útil
devuelta). En el nivel de protocolo, la API web devuelve el código de estado HTTP que corresponda y, en el nivel de
aplicación, la API web devuelve una carga útil que informa del error con suficiente granularidad (atributos obligatorios y
opcionales).

64. En relación con los atributos obligatorios y opcionales para el control de errores en el nivel de aplicación:

a) Los atributos code y message que figuran a continuación son obligatorios y, si bien el atributo message puede
cambiar con el tiempo, el atributo code no cambiará, sino que es fijo y siempre se referirá al problema en
cuestión:

− code (entero) - código técnico de la situación de error que se utilizará con fines de asistencia; y
− message (cadena) - mensaje dirigido al usuario (localizable) que describe la petición de error como se

solicita en el encabezado HTTP Accept-Language (véase RSG-114).

7 Véase el capítulo Material de referencia.

https://tools.ietf.org/html/rfc7807

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.25

es / 03-90-01 Fecha: diciembre de 2025

b) Los siguientes atributos son condicionalmente obligatorios:

− details - si el procesamiento de errores requiere la anidación de las respuestas de error, debe utilizarse
el campo details para ese fin. El campo details debe contener una matriz de objetos JSON que
muestre las propiedades de code y message con la misma semántica antes descrita.

c) Los siguientes atributos son opcionales:

− target - la estructura de error puede contener el atributo target que describe un elemento de datos
(por ejemplo, una ruta de recurso);

− status - duplicado del código de estado HTTP para propagarlo a lo largo de la cadena de llamada o
para escribirlo en el registro de soporte sin necesidad de añadir explícitamente el código de estado HTTP
una y otra vez;

− moreInfo - matriz de enlaces que contienen más información sobre la situación de error, como
indicaciones para el usuario final; y

− internalMessage – un mensaje técnico, por ejemplo, para fines de registro.

65. El control de errores debería ajustarse a las normas HTTP (RFC 9110). Se recomienda una carga útil de error
mínima:

Por ejemplo, la respuesta HTTP que figura a continuación se devuelve cuando no se ha encontrado la marca para
el número de registro internacional proporcionado:

Ejemplo con carga útil en formato XML conforme a la Norma ST.96

GET /api/v1/trademarks?irn=000000000000001John%20Smith&expiryDate=2018-12-31.
HTTP/1.1
Host: wipo.int
Accept: application/xml

A continuación se muestra un ejemplo de respuesta HTTP:

HTTP/1.1 404
Content-Type: application/xml
 <?xml version="1.0" encoding="UTF-8"?>
<com:TransactionError xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Common
TransactionError.xsd">
 <com:TransactionErrorCode>TRADEMARK_NOT_FOUND</com:TransactionErrorCode>
 <com:TransactionErrorText>The trademark with the provided International
Registration Number was not found</com:TransactionErrorText>
</com:TransactionError>

Ejemplo con carga útil en formato JSON según la Norma ST.97

HTTP/1.1 404
Content-Type: application/json
{
 "transactionError": [
 {
 "transactionErrorCode": "TRADEMARK_NOT_FOUND"
 },
 {
 "transactionErrorText": "The trademark with the provided
International Registration Number was not found"
 },
]
}

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.26

es / 03-90-01 Fecha: diciembre de 2025

[RSG-88] En el nivel de protocolo, una API web DEBE devolver un código de estado HTTP apropiado
seleccionado de la lista de códigos de estado HTTP estándares.

[RSJ-89] En el nivel de aplicación, una API web DEBE devolver una carga útil que informe del error con
suficiente granularidad. Los atributos code y message son obligatorios, el atributo details es
condicionalmente obligatorio y los atributos target, status, moreInfo, e internalMessage
son opcionales.

[RSG-90] Los errores NO DEBEN exponer datos esenciales para la seguridad o detalles técnicos internos,
como las pilas de llamada en los mensajes de error.

[RSG-91] El encabezado HTTP Reason-Phrase (descrito en la Norma RFC 9112) NO DEBE utilizarse para
transmitir mensajes de error.

ID de correlación

66. Normalmente, el consumo de un servicio provoca la activación de otros muchos servicios. Debería existir un
mecanismo para correlacionar todas las activaciones de servicios en el mismo contexto de ejecución, por ejemplo,
mediante la inclusión del ID de correlación en los mensajes de registro, lo que identifica unívocamente el error registrado.
Conviene asignar con ese fin un nombre de encabezado —por ejemplo, normalmente se utilizan Request-ID o Correlation-
ID—, en la fase de diseño de una API, lo que posteriormente favorecerá la compatibilidad entre diferentes API y las últimas
implementaciones.

[RSG-92] Cada error registrado DEBERÍA tener un ID de correlación único. DEBERÍA utilizarse un encabezado
HTTP personalizado con el nombre Correlation-ID.

Contrato de servicio

67. REST no es un protocolo o una arquitectura, sino un estilo de arquitectura con propiedades y restricciones de
arquitectura. No hay normas oficiales para los contratos de API REST. En la presente norma la documentación de la API es
equivalente al contrato de servicio REST. El contrato de servicio se basa en los tres elementos fundamentales que se
indican a continuación:

a) Sintaxis del identificador de recursos: ¿cómo se puede expresar el lugar desde o hacia el que se transfieren los
datos?

b) Métodos: ¿cuáles son los mecanismos de protocolo utilizados para transferir los datos?

c) Tipos de medios: ¿qué tipo de datos se están transfiriendo? Los servicios REST individuales utilizan estos
elementos en diferentes combinaciones para exponer sus capacidades. La definición de un conjunto de
referencia de estos elementos para su uso en una colección (o inventario) de servicios hace que este tipo de
contrato de servicio sea uniforme.

[RSG-93] El modelo de contrato de servicio DEBE especificar lo siguiente:

− la versión de la API;

− información sobre la semántica de los elementos de la API;

− los recursos;

− los atributos de los recursos;

− los parámetros de consulta;

− los métodos;

− los tipos de medios;

− la gramática de búsqueda (si se admite alguna);

− los códigos de estado HTTP;

− los métodos HTTP;

− las restricciones y las características distintivas; y

− la seguridad (por ejemplo, los esquemas privados).

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.27

es / 03-90-01 Fecha: diciembre de 2025

[RSG-94] El modelo de contrato de servicio DEBERÍA incluir peticiones y respuestas en el esquema XML o en
el esquema JSON y ejemplos de uso de la API en los formatos compatibles, a saber, XML o JSON.

[RSG-95] Una API REST DEBE proporcionar la documentación de la API como un contrato de servicio.

[RSG-96] Toda implementación de una API web que no cumpla con la presente norma DEBE ser documentada
explícitamente en el contrato de servicio. Si no se especifica ninguna desviación de una de sus
normas en el contrato de servicio, DEBE asumirse que se sigue la presente norma.

[RSG-97] Un contrato de servicio DEBERÍA permitir la generación de código esquemático de cliente API.

[RSG-98] Un contrato de servicio DEBERÍA permitir la generación de código esquemático de servidor.

68. La documentación de la API web puede escribirse, por ejemplo, utilizando el lenguaje de modelado de API RESTful
(RAML), la especificación OpenAPI (OAS) y el lenguaje de descripción de servicios web (WSDL). En la presente norma se
recomienda utilizar RAML por ser el único lenguaje totalmente compatible con la validación de petición/respuesta que usa
tanto esquema XSD como esquema JSON8.

[RSG-99] La documentación de las API web DEBERÍA escribirse utilizando el RAML o la OAS. NO DEBERÍAN
utilizarse formatos de documentación personalizados.

Tiempo de espera

69. De acuerdo con los principios de diseño orientado a servicios, debería limitarse el uso del servidor.

[RSG-100] Un consumidor de API web DEBERÍA poder especificar un tiempo de espera del servidor para cada
petición; DEBERÍA utilizarse un encabezado HTTP personalizado. También DEBERÍA establecerse
un tiempo máximo de espera del servidor para evitar un uso excesivo de los recursos del servidor.

Control del estado

70. Si el proceso se desarrolla siguiendo los principios de REST, será el cliente, y no el servidor, el encargado de
controlar el estado, ya que las API REST no tienen estado. Por ejemplo, si varios servidores implementan una sesión, debe
desaconsejarse la duplicación.

Versionado por respuesta

71. La recuperación reiterada del mismo conjunto de datos puede suponer un consumo de ancho de banda sin que el
conjunto de datos se haya modificado entre las peticiones. Los datos deberían ser recuperados solo si se han modificado.
Para ello puede recurrirse a la validación de recursos basada en el contenido o a la validación de recursos basada en el
tiempo. Si se utiliza el versionado por respuesta, el consumidor de servicios puede implementar el bloqueo optimista.

[RSG-101] Una API web DEBERÍA admitir la recuperación condicional de datos, para asegurar que solo se
recuperen los datos que se hayan modificado. DEBERÍA utilizarse la validación de recursos basada
en el contenido por ser la más precisa.

[RSG-102] Para implementar la validación de recursos basada en el contenido, DEBERÍA utilizarse el
encabezado HTTP ETag en la respuesta para codificar el estado de los datos. El valor de Etag
DEBERÍA utilizarse en los encabezados condicionales HTTP (como If-Match o If-None-Match)
en las peticiones subsiguientes. Si no se modificaron los datos desde que la petición devolvió el
ETag, el servidor DEBERÍA devolver el código de estado 304 Not Modified. Este mecanismo se
especifica en la Norma RFC 9110 del IETF.

[RSG-103] Para implementar la validación de recursos basada en el tiempo DEBERÍA utilizarse el encabezado
HTTP Last-Modified. Este mecanismo se especifica en la Norma RFC 9110 del IETF.

[RSG-104] Utilizando el versionado por respuesta, un consumidor de servicios PUEDE implementar el bloqueo
optimista.

8 OAS es una especificación. También es compatible con Markdown, pero RAML no. Por otro lado, aunque tanto la OAS como el
RAML son compatibles con el esquema JSON de validación de petición/respuesta, la OAS no es compatible con el esquema XSD.
Por lo tanto, la OAS podrá ser recomendada cuando se completen sus funciones.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.28

es / 03-90-01 Fecha: diciembre de 2025

Almacenamiento en caché

72. La implementación de una API web debería ser compatible con el control de caché para ahorrar ancho de banda, de
acuerdo con la Norma RFC 9111 del IETF.

[RSG-105] Las API web DEBEN admitir el almacenamiento en caché de los resultados de GET; y PUEDEN
admitir el almacenamiento en caché de los resultados de otros métodos HTTP.

[RSG-106] DEBERÍAN utilizarse los encabezados de respuesta HTTP Cache-Control y Expires. Expires
PUEDE utilizarse para prestar asistencia a los clientes heredados.

Transferencia gestionada de archivos

73. Cuando se transfieren (es decir, se descargan o se suben) archivos grandes, es muy probable que se produzcan
interrupciones en la red o algún otro tipo de fallo en la transmisión. Además, tanto el proveedor de servicios como el
consumidor de servicios consumen una gran cantidad de memoria. Por consiguiente, se recomienda transferir los archivos
grandes por partes mediante varias peticiones. Esta opción permite también conocer el progreso de la descarga o la subida
total. La transferencia de archivos grandes por partes debe ser compatible con la reanudación y el proveedor de servicios
debe indicar si permite la transferencia de archivos grandes por partes9.

74. Hay dos enfoques para implementar este tipo de transferencia: uno consiste en usar el encabezado Transfer-
Encoding: chunked y el otro en usar el encabezado Content-Length. Estos encabezados no deben usarse juntos.
Content-Length indica el tamaño total del archivo transferido, por lo que el receptor conocerá la longitud del cuerpo y
podrá estimar el tiempo necesario para completar la descarga. El encabezado Transfer-Encoding: chunked es útil
para transmitir datos no acotados, como material sonoro o visual, pero no archivos. Se recomienda utilizar el encabezado
Content-Length para la descarga ya que requiere un nivel bajo de utilización del servidor en comparación con
Transfer-Encoding: chunked, y el encabezado Transfer-Encoding: chunked para la subida.

Una API web debe indicar si es compatible con descargas de archivos por partes, mediante respuestas a peticiones HEAD
que incluyan los encabezados de respuesta HTTP Accept-Ranges y Content-Length. El primer encabezado debe
indicar la unidad que puede ser usada para definir un rango, y nunca debe tener el valor 'ninguno'. El segundo indica el
tamaño total del archivo que se descargará.

[RSG-107] Una API web DEBE indicar si permite descargas de archivos por partes, mediante respuestas a
peticiones HEAD que incluyan los encabezados de respuesta HTTP Accept-Ranges y Content-
Length.

75. Una API web que permita la descarga de archivos grandes debería admitir peticiones parciales de acuerdo con la
Norma RFC 7232 del IETF, a saber:

− el consumidor de servicios debe utilizar el encabezado HTTP Range para realizar una petición de rango;
− La respuesta del proveedor de servicios debe contener los encabezados HTTP Content-Range y Content-

Length; y
− La respuesta del proveedor de servicios debe incluir el código de estado HTTP 206 Partial Content en

caso de que la petición de rango sea correcta. Si el rango solicitado está fuera de los límites (los valores de rango
no se superponen a la extensión del recurso), el servidor responde con el código de estado 416 Requested
Range Not Satisfiable. Si el rango solicitado es válido, se devuelve el código de estado 200 OK desde un
servidor.

[RSG-108] Una API web DEBERÍA permitir la descarga de archivos por partes. DEBERÍA admitirse la petición
de múltiples rangos.

76. También pueden solicitarse múltiples rangos si se utiliza el encabezado HTTP Content-Type:
multipart/byteranges; boundary=XXXXX. Una petición de rango puede ser condicional si se combina con los
encabezados HTTP ETag o If-Range.

77. No existe ningún documento RFC del IETF relativo a la subida de archivos grandes. Por consiguiente, en la
presente norma no se incluye ninguna recomendación al respecto.

9 El proveedor de servicios puede devolver la ubicación del archivo y entonces el consumidor de servicios podrá llamar a un servicio
de directorio para descargar el archivo. Finalmente, se requiere la descarga de una parte del archivo. Este párrafo no es aplicable a
los protocolos que no son REST, como FTP o sFTP o rsync.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.29

es / 03-90-01 Fecha: diciembre de 2025

[RSG-109] Una API web DEBERÍA especificar si admite la subida de archivos por partes.

[RSG-110] Una API web DEBERÍA ser compatible con la subida de archivos por partes. DEBERÍA admitirse la
petición de múltiples rangos.

78. La Norma RFC 9110 del IETF no impone ningún límite de tamaño específico para las peticiones. El contrato de
servicio de la API debe especificar el límite máximo para las peticiones. Además, durante la ejecución, el proveedor de
servicios debe indicar al consumidor de servicios si se ha superado el límite máximo permitido.

[RSG-111] El proveedor de servicios DEBERÍA devolver con los encabezados de respuesta HTTP el código de
estado HTTP 413 Request Entity Too Large en caso de que la petición supere el límite
máximo permitido. PUEDE utilizarse un encabezado HTTP personalizado para indicar el tamaño
máximo de la petición.

Gestión de preferencias

79. Un proveedor de servicios puede permitir que un consumidor de servicios configure valores e influya en la forma en
que el proveedor procesa sus peticiones. En la Norma RFC 8144 del IETF se describe un método estándar para llevar a
cabo la gestión de preferencias.

[RSG-112] Si una API web admite la gestión de preferencias, esta DEBERÍA implementarse de acuerdo con la
Norma RFC 8144 del IETF, es decir, DEBERÍA utilizarse el encabezado de petición HTTP Prefer y
devolverse el encabezado de respuesta HTTP Preference-Applied (que incluye la petición
original).

[RSG-113] Si una API web es compatible con la gestión de preferencias, en el contrato de servicio DEBE
indicarse la nomenclatura de las preferencias que PUEDEN establecerse mediante el encabezado
Prefer.

Traducción

80. Un consumidor de servicios puede solicitar las respuestas en un idioma específico si el proveedor del servicio lo
permite. En la Norma RFC 9110 del IETF se establecen especificaciones estándares para la gestión de una serie de
lenguas naturales.

[RSG-114] Si una API web permite la traducción de datos, DEBE admitir el encabezado de petición HTTP
Accept-Language con el que se indica el conjunto de lenguas naturales preferidas para la
respuesta, conforme a lo especificado en la Norma RFC 9110 del IETF.

Operaciones de larga duración

81. Hay casos en los que las API web pueden conllevar operaciones de larga duración. Por ejemplo, la generación de
un PDF por el proveedor de servicios puede llevar algunos minutos. En este párrafo se recomienda un patrón típico de
intercambio de mensajes para implementar esos casos, como el que figura a continuación:

// (a)
GET https://wipo.int/api/v1/patents
Accept: application/pdf
…
// (b)
HTTP/1.1 202 Accepted
Location: https://wipo.int/api/v1/queues/12345
…
// (c1)
GET https://wipo.int/api/v1/queues/12345
…
HTTP/1.1 200 OK
…
// (c2)
GET https://wipo.int/api/v1/queues/12345
HTTP/1.1 303 See Other
Location: https://wipo.int/api/v1/path/to/pdf
…
// (c3)
GET https://wipo.int/api/v1/path/to/pdf

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.30

es / 03-90-01 Fecha: diciembre de 2025

82. Si una API es compatible con operaciones de larga duración, estas deberían ejecutarse de forma asincrónica para
garantizar que el usuario no tenga que esperar por la respuesta. La norma enunciada a continuación recomienda un
enfoque para la implementación de dichas operaciones.

[RSG-115] Si la API permite operaciones de larga duración, estas DEBERÍAN ejecutarse de forma asíncrona.
DEBERÍA seguirse el enfoque descrito a continuación:

a) el consumidor de servicios activa la operación de servicio;

b) la operación de servicio devuelve el código de estado 202 Accepted conforme a la Norma RFC 9110 del
IETF (sección 15.3.3), que indica que la petición fue aceptada para su procesamiento, pero este no se
completó. La ubicación de la tarea pendiente que se creó también se devuelve con el encabezado HTTP
Location; y

c) el consumidor de servicios llama a la ubicación devuelta para saber si el recurso está disponible. Si el recurso
no está disponible, la respuesta DEBERÍA incluir el código de estado 200 OK y el estado de la tarea (por
ejemplo, pendiente) y PUEDE contener otra información (por ejemplo, un indicador de progreso y/o un enlace
para cancelar o eliminar la tarea mediante el método HTTP DELETE). Si el recurso está disponible, la respuesta
DEBERÍA incluir el código de estado 303 See Other, y el encabezado HTTP Location DEBERÍA contener
el URL para recuperar los resultados de la tarea.

Modelo de seguridad

Normas generales

83. En el marco de aplicación de la presente norma, se entiende por seguridad de la API los atributos de seguridad que
son fundamentales para garantizar que la información accesible por la API y la propia API sean seguras durante todo su
ciclo de vida. Dichos atributos son la confidencialidad, la integridad, la disponibilidad, la confianza, el no repudio, la
compartimentación, la autenticación, la autorización y la auditoría.

[RSG-116] Confidencialidad: las API y su información DEBEN ser identificadas, clasificadas y protegidas en todo
momento frente a acciones no autorizadas de acceso, difusión e interceptación. DEBEN seguirse los
principios de mínimos privilegios, cero confianza, necesidad de conocer y necesidad de compartir10.

[RSG-117] Garantía de integridad: las API y su información DEBEN estar protegidas contra acciones no
autorizadas de modificación, duplicación, corrupción y destrucción. La modificación de la información
DEBE realizarse mediante transacciones e interfaces aprobadas. La actualización de los sistemas
DEBE llevarse a cabo mediante procesos aprobados de gestión de la configuración, gestión de
cambios y gestión de parches.

[RSG-118] Disponibilidad: las API y su información DEBEN estar disponibles para los usuarios autorizados en el
debido momento, conforme se especifica en los acuerdos de nivel de servicio, las políticas de control
de acceso y los procesos operativos definidos.

[RSG-119] No repudio: toda transacción procesada o acción realizada por las API DEBE garantizar el no repudio
mediante la auditoría, autorización y autenticación adecuadas, rutas seguras y servicios y
mecanismos de no repudio.

[RSG-120] Autenticación, autorización, auditoría: los usuarios, los sistemas, las API o los dispositivos que
participen en transacciones o acciones importantes DEBEN ser autenticados, autorizados mediante
servicios de control de acceso basados en roles o atributos y mantener la separación de tareas.
Además, todas las acciones DEBEN ser registradas y el nivel de autenticación debe aumentar en
función del riesgo asociado a la información.

Directrices para una gestión de las API segura y resistente a las amenazas

84. Las API deberían diseñarse, construirse, probarse e implementarse teniendo en cuenta los requerimientos de
seguridad y los riesgos. Las contramedidas y los controles necesarios deberían ser incorporados directamente en el diseño
y no a posteriori. Se recomienda utilizar las mejores prácticas y normas, como el Proyecto Abierto de Seguridad de
Aplicaciones Web (OWASP).

10 https://www.owasp.org/index.php/Security_by_Design_Principles

…

https://www.owasp.org/index.php/Security_by_Design_Principles

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.31

es / 03-90-01 Fecha: diciembre de 2025

[RSG-121] En el desarrollo de las API DEBEN tenerse debidamente en cuenta las amenazas, los casos de uso
malicioso, las técnicas de codificación segura, la seguridad de la capa de transporte (TLS) y las
pruebas de seguridad, sobre todo:

− los PUT y POST: qué modificaciones de los datos internos podrían utilizarse para atacar o transmitir
información errónea.

− los DELETE: podrían utilizarse para eliminar el contenido de un almacén de recursos internos;

− los métodos permitidos de la lista blanca: para asegurar que los métodos HTTP permitidos sean
debidamente restringidos y que otros devuelvan un código de respuesta adecuado; y

− los ataques más conocidos deberían considerarse durante la fase de modelado de amenazas del
proceso de diseño para asegurar que el riesgo de amenaza no aumente. DEBEN tenerse en
cuenta las amenazas y medidas de mitigación definidas en la lista de los diez riesgos más críticos
de OWASP11.

[RSG-122] En el desarrollo de las API DEBERÍAN seguirse las normas y las mejores prácticas que se enumeran
a continuación:

− las mejores prácticas de codificación segura: OWASP Secure Coding Principles (Principios de
Codificación Segura de OWASP);

− la seguridad de las API Rest: REST Security Cheat Sheet (Lista de Recomendaciones Prácticas
sobre Seguridad REST);

− las entradas de escape y la protección de secuencias de comandos en sitios cruzados: OWASP
XSS Cheat Sheet (Lista de Recomendaciones Prácticas de OWASP sobre Secuencias de
Comandos en Sitios Cruzados);

− la prevención de ataques de inyección SQL: OWASP SQL Injection Cheat Sheet (Lista de
Recomendaciones Prácticas de OWASP sobre Inyección SQL), OWASP Parameterization Cheat
Sheet (Lista de Recomendaciones Prácticas de OWASP sobre Parametrización); y

− la seguridad de la capa de transporte: OWASP Transport Layer Protection Cheat Sheet (Lista de
Recomendaciones Prácticas de OWASP sobre la Seguridad de la Capa de Transporte).

[RSG-123] DEBEN realizarse pruebas de seguridad y evaluaciones de vulnerabilidad para garantizar que las
API son seguras y resistentes a las amenazas. Para ello PUEDEN aprovecharse las pruebas de
seguridad de aplicaciones estáticas y dinámicas (SAST/DAST), las herramientas de gestión
automatizada de vulnerabilidades y las pruebas de penetración.

Cifrado, integridad y no repudio

85. Los servicios protegidos deben estar asegurados para proteger las credenciales de autenticación en tránsito: por
ejemplo, las contraseñas, las claves de API o los tokens web JSON. También debería garantizarse la integridad de los
datos transmitidos y el no repudio de las medidas adoptadas. Los mecanismos criptográficos seguros pueden garantizar la
confidencialidad, el cifrado, la integridad y el no repudio. La confidencialidad directa perfecta es un medio para asegurar
que las claves de sesión no se vean comprometidas.

[RSG-124] Los servicios protegidos DEBEN proporcionar puntos finales HTTP solo mediante TLS 1.2, o una
versión superior, con un paquete de cifrado que incluya el protocolo Elliptic-curve Diffie–Hellman
(ECDH) para el intercambio de claves.

[RSG-125] Cuando se consideran los protocolos de autenticación, DEBERÍA utilizarse una confidencialidad
directa perfecta para garantizar la seguridad del transporte. NO DEBERÍAN permitirse los algoritmos
criptográficos inseguros ni la compatibilidad hacia atrás con SSL 3 y TLS 1.0/1.1.

[RSG-126] Para una máxima seguridad y confianza, DEBERÍA establecerse una VPN Ipsec de sitio a sitio para
proteger mejor la información transmitida a través de redes inseguras.

[RSG-127] La aplicación consumidora DEBERÍA validar la cadena de certificados TLS al realizar peticiones a
recursos protegidos, incluida la comprobación de la lista de revocación de certificados.

11 https://owasp.org/www-project-top-ten/2017

https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.32

es / 03-90-01 Fecha: diciembre de 2025

[RSG-128] Los servicios protegidos DEBERÍAN utilizar solo certificados válidos emitidos por una autoridad
certificadora de confianza.

[RSG-129] Los tokens DEBERÍAN ser firmados utilizando algoritmos de firma segura que cumplan con el
estándar de firma digital (DSS) FIPS 186-4. DEBERÍAN considerarse los algoritmos de firma digital
de Rivest, Shamir y Adleman (RSA) o de curva elíptica (ECDSA).

Autenticación y autorización

86. La autorización permite controlar el acceso a un recurso. No solo abarca la implementación de controles de acceso,
sino también la definición de esos controles, incluidas las normas y políticas de acceso, que deberían establecer el nivel de
acceso solicitado aceptable para el proveedor y la aplicación consumidora. El fundamento del control de acceso consiste en
que el proveedor concede o deniega a una aplicación consumidora y/o un consumidor el acceso a un recurso con un
determinado nivel de granularidad. El acceso de grano grueso debería considerarse en el punto de petición de la API o de
la puerta de enlace de la API, mientras que el control de acceso de grano fino debería considerarse en los servicios en
segundo plano, si es posible. Puede utilizarse el modelo de control de acceso basado en roles (RBAC) o el modelo de
control de acceso basado en atributos (ABAC).

87. Si un servicio está protegido, debería optarse por OpenID Connect en lugar de OAuth 2.0 ya que subsana muchas
de las deficiencias de este último y proporciona una forma estandarizada de obtener los datos del perfil del propietario de
un recurso, el formato estandarizado de JSON Web Token (JWT) y la criptografía. No deberían utilizarse otros esquemas
de seguridad como la autorización básica de HTTP, que requiere que el cliente guarde una contraseña en texto plano para
enviarla junto con cada petición. Además, la verificación de esa contraseña sería más lenta porque se tendría que acceder
al almacén de credenciales. OAuth 2.0 no especifica el token de seguridad. Por consiguiente, debería utilizarse el JWT
frente a, por ejemplo, el SAML 2.0, que requiere más información.

[RSG-130] La autenticación anónima DEBE utilizarse solo cuando los clientes y la aplicación que están
utilizando acceden a información o funciones con un nivel de sensibilidad bajo que no deberían
requerir autenticación, como la información pública.

[RSG-131] NO DEBE permitirse la autenticación con nombre de usuario y contraseña o con contraseña hash
[generada mediante una función hash o función resumen].

[RSG-132] Si un servicio está protegido, DEBERÍA usarse el protocolo OpenID Connect.

[RSG-133] Cuando se utiliza JSON Web Token (JWT), el secreto JWT DEBERÍA tener una entropía alta para
aumentar el factor de trabajo de los ataques de fuerza bruta; los tokens TTL y RTTL DEBERÍAN ser
lo más cortos posibles; y la información sensible NO DEBERÍA almacenarse en la carga útil JWT.

88. Una opción común de diseño de seguridad es centralizar la autenticación de los usuarios, que debería ser
almacenada en un proveedor de identidad (IdP) o localmente en los puntos finales REST.

89. Los servicios deberían procurar evitar la fuga de credenciales. Las contraseñas, los tokens de seguridad y las
claves de API no deben aparecer en el URL, ya que podrían quedarse en los registros del servidor web que podrían ser
utilizados. Por ejemplo, el siguiente URL no es apropiado por contener la clave de API:
https://wipo.int/api/patents?apiKey=a53f435643de32.

[RSG-134] En las peticiones POST y PUT, los datos sensibles DEBERÍAN ser transferidos en el cuerpo de la
petición o mediante los encabezados de la petición.

[RSG-135] En las peticiones GET, los datos sensibles DEBERÍAN ser transferidos en un encabezado HTTP.

[RSG-136] Para minimizar la latencia y reducir el acoplamiento entre los servicios protegidos, la decisión de
control de acceso DEBERÍA ser tomada localmente por los puntos finales REST.

90. Autenticación basada en las claves de API. Siempre que se requiera una autenticación de sistema a sistema,
deberían utilizarse claves de API generadas de forma automática y aleatoria. El riesgo inherente a este modo de
autenticación es que quienes tengan una copia de la clave de API pueden utilizarla como si fueran la aplicación
consumidora legítima. Por consiguiente, todas las comunicaciones deberían cumplir lo dispuesto en [RSG-124] para
proteger la clave en tránsito. La responsabilidad de proteger adecuadamente la copia de la clave de API recae en el
desarrollador de la aplicación. Si la clave de API está incluida en la aplicación consumidora, podría ser descifrada y
extraída. Si se almacena en archivos de texto plano, podría ser robada y reutilizada con fines maliciosos. Por consiguiente,
las claves de API deben estar protegidas por un almacén de credenciales o un mecanismo de gestión secreto. Las claves
de API pueden utilizarse para controlar el uso de los servicios, incluidos los servicios públicos.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.33

es / 03-90-01 Fecha: diciembre de 2025

[RSG-137] DEBERÍAN utilizarse claves de API en los servicios protegidos y públicos para evitar que se
sobrecargue a sus proveedores de servicios con múltiples peticiones (ataques de denegación de
servicio). En el caso de los servicios protegidos, PUEDEN utilizarse claves de API para la
monetización (planes adquiridos), la aplicación de políticas de calidad de servicio y la supervisión.

[RSG-138] Las claves de API PUEDEN combinarse con el encabezado de petición HTTP user-agent para
determinar si el usuario es una persona o un agente de software, conforme a lo especificado en la
Norma RFC 9110 del IETF.

[RSG-139] El proveedor de servicios DEBERÍA devolver junto con los encabezados de respuesta HTTP el
estado de uso en el momento. Se PUEDEN devolver los siguientes datos de respuesta:

− límite de tasa (rate limit): máximo número de peticiones por minuto permitido en el sistema;

− límite de tasa restante (rate limit remaining): número de peticiones restantes (-1 indica que se ha
superado el límite); y

− restablecimiento del límite de tasa (rate limit reset): tiempo (en segundos) necesario para que se
restablezca el número máximo de peticiones permitidas.

[RSG-140] El proveedor de servicios DEBERÍA devolver el código de estado 429 Too Many Requests si se
reciben demasiadas peticiones en poco tiempo.

[RSG-141] Las claves de API DEBEN ser revocadas si el cliente incumple el contrato de uso, conforme a lo
especificado por la oficina de propiedad intelectual.

[RSG-142] La transferencia de las claves de API DEBERÍA realizarse mediante encabezados HTTP
personalizados. NO DEBERÍA realizarse mediante parámetros de consulta.

[RSG-143] Las claves de API DEBERÍAN generarse de forma aleatoria.

91. Si bien la criptografía y los certificados de clave pública se utilizan con bastante frecuencia, cuando una API web
requiera proporcionar mayor seguridad con una autenticación más fuerte que la que ofrecen las claves de API debería
utilizarse la autenticación mutua basada en certificados. Los certificados seguros y de confianza deben ser emitidos por una
autoridad certificadora de confianza mutua mediante un proceso de establecimiento de confianza o una certificación
cruzada. Se puede recurrir a una autenticación fuerte para mitigar los riesgos de seguridad de la identidad propios de los
sistemas sensibles y las acciones privilegiadas. Deberían utilizarse certificados compartidos entre el cliente y el servidor,
por ejemplo X.509.

[RSG-144] Los certificados seguros y de confianza DEBEN ser emitidos por una autoridad certificadora de
confianza mutua mediante un proceso de establecimiento de confianza o una certificación cruzada.

[RSG-145] DEBERÍAN utilizarse certificados compartidos entre el cliente y el servidor, por ejemplo X.509, para
mitigar los riesgos de seguridad de la identidad propios de los sistemas sensibles y las acciones
privilegiadas.

[RSG-146] Para servicios con un alto nivel de privilegio, la autenticación mutua bidireccional entre el cliente y el
servidor DEBERÍA utilizar certificados para ofrecer una mayor protección.

[RSG-147] DEBERÍA implementarse la autenticación multifactor para mitigar los riesgos de la identidad en
aplicaciones con un perfil de alto riesgo, en sistemas que procesen información muy sensible o en
acciones privilegiadas.

Disponibilidad y protección frente a amenazas

92. La disponibilidad en este contexto se refiere a la protección contra las amenazas para reducir al mínimo el tiempo
de inactividad de la API, y al análisis de la forma en que pueden mitigarse las amenazas a las API mediante principios
básicos de diseño. También abarca, entre otras acciones, el escalado para satisfacer la demanda y asegurar que los
entornos de alojamiento sean estables. Todo ello se tiene en cuenta en todas las pilas de hardware y software que
permiten el desarrollo de las API. Normalmente estas cuestiones se abordan en el marco de las normas de continuidad de
las actividades y recuperación en casos de desastre, que recomiendan un enfoque de evaluación de riesgos para definir los
requisitos de disponibilidad.

Peticiones entre dominios

93. Algunas peticiones entre dominios, en particular las peticiones Ajax, están prohibidas por defecto en virtud de la
política de seguridad de mismo origen. Con arreglo a dicha política, un navegador de Internet permite que los programas de

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.34

es / 03-90-01 Fecha: diciembre de 2025

instrucciones (scripts) contenidos en una primera página web accedan a los datos de una segunda página web, solo si
ambas páginas web tienen el mismo origen (indicado mediante una combinación del esquema de URI, el nombre del
anfitrión y el número de puerto).

94. El uso compartido de recursos de origen cruzado (CORS) es una norma del W3C que especifica de manera flexible
las peticiones permitidas entre dominios. Al proporcionar los encabezados HTTP apropiados para CORS, la API REST
indica al navegador los dominios u orígenes autorizados para realizar llamadas al servicio REST con JavaScript.

95. El JSON con relleno (JSONP) es un método para enviar datos JSON sin que influyan cuestiones de petición entre
dominios. Introduce funciones de retrollamada para cargar datos JSON de diferentes dominios, lo cual es posible porque la
etiqueta HTML <script> no está afectada por la política de mismo origen. Todo lo que se importa a través de esa etiqueta
se ejecuta inmediatamente en el contexto global. En lugar de pasar un archivo JavaScript, se puede pasar un URL a un
servicio que devuelva el código JavaScript.

96. Para sortear la restricción que impide realizar peticiones entre dominios se suelen seguir los siguientes enfoques:

− JSONP es una solución para permitir las peticiones entre dominios. No ofrece ningún mecanismo de detección
de errores, es decir, si hay un problema y el servicio falla o responde con un error HTTP, no hay forma de que el
cliente pueda saber qué ocurre. Simplemente, la aplicación Ajax se quedará colgada. Además, el sitio que usa
JSONP confiará incondicionalmente en el JSON proporcionado desde un dominio diferente;

− Otra alternativa para permitir peticiones entre dominios es el elemento HTML iframe. Aplicando el método
JavaScript window.postMessage (message, targetOrigin) al elemento iframe es posible pasar una
petición a un sitio de un dominio diferente. El uso de iframe es compatible incluso con navegadores antiguos.
Además, solo es compatible con GET. El origen de la página iframe siempre debe comprobarse por razones de
seguridad; y

− CORS es un enfoque estandarizado que permite realizar una llamada a un dominio externo. Puede utilizar
XMLHttpRequest para enviar y recibir datos y tiene un mecanismo de control de errores mejor que JSONP. Es
compatible con muchos tipos de autorización en comparación con JSONP, que solo admite cookies. También es
compatible con diversos métodos HTTP mientras que JSONP solo lo es con GET. Por otro lado, no siempre es
posible implementar CORS, ya que los navegadores tienen que admitirlo y los consumidores de la API deben
estar incluidos en la lista blanca de CORS.

[RSG-148] Si la API REST es pública, el valor del encabezado HTTP Access-Control-Allow-Origin DEBE
ser '*'.

[RSG-149] Si la API REST está protegida, DEBERÍA utilizarse CORS, si es posible. De lo contrario, PUEDE
utilizarse JSONP como alternativa, pero solo para peticiones GET, por ejemplo, cuando el usuario
accede con un navegador antiguo. NO DEBERÍA utilizarse iframe.

Modelo de madurez de la API

97. Las API REST suelen clasificarse mediante un modelo de madurez. Aunque existen varios modelos, la presente
norma hace referencia al modelo de madurez de Richardson, que establece tres niveles de madurez. Esta norma
recomienda el nivel 2 para las API REST, ya que el nivel 3 resulta complejo de aplicar, requiere una importante inversión
conceptual y de desarrollo por parte de los proveedores y consumidores de servicios, y no produce un beneficio inmediato
para los consumidores de servicios.

98. Si una API web está en el nivel 3 del modelo de madurez de Richardson, debe utilizarse un formato de hipermedia.
El lenguaje de aplicación de hipertexto (HAL) es simple y es compatible con las respuestas JSON y XML. Sin embargo, se
trata solo de una posible recomendación, junto con otros formatos de hipermedia, como el JSON-LD. Debería utilizarse el
esquema JSON porque, aunque actualmente no existe una especificación para el nivel 3 del modelo de madurez de
Richardson, es el que se considera más maduro. No deberían utilizarse los siguientes formatos de hipermedia: la Norma
RFC 8288 del IETF y Collection+JSON.

99. Se recomienda que las instancias descritas por un esquema proporcionen un enlace a un esquema JSON
descargable utilizando la relación de enlace describedby, tal como se define en la sección 8.1 del Linked Data
Protocol 1.0 [W3C.REC-ldp-20150226].

En HTTP, esas relaciones de enlace pueden añadirse a cualquier respuesta usando el encabezado Link, con arreglo a la
Norma RFC 8288. A continuación figura un ejemplo de uso de dicho encabezado:

Link: <http://example.com/my-hyper-schema#>; rel="describedby"

https://tools.ietf.org/html/rfc8288

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.35

es / 03-90-01 Fecha: diciembre de 2025

[RSJ-150] Si se utilizan instancias descritas por un esquema, DEBERÍA utilizarse el encabezado Link para
proporcionar un enlace a un esquema JSON descargable de acuerdo con la Norma RFC 8288.

[RSJ-151] Una API web DEBERÍA alcanzar al menos el nivel 2 (propiedades nativas de transporte) del modelo
de madurez de Richardson. Se PUEDE implementar el nivel 3 (hipermedia) que permite descubrir la
API en su totalidad.

100. Se puede diseñar un formato de hipermedia personalizado. En ese caso, se recomiendan una serie de atributos.
Por ejemplo:

{

 "link": {

 "href": "/patents",

 "rel": "self"

 },

 ...

}

[RSJ-152] Para diseñar un formato de hipermedia personalizado DEBERÍAN utilizarse los siguientes atributos
en el enlace de atributos:

− href: el URI de destino;

− rel: el significado del URI de destino;

− self: el URI hace referencia al propio recurso;

− next: el URI hace referencia a la página siguiente (si se utiliza durante la paginación);

− previous: el URI hace referencia a la página anterior (si se utiliza durante la paginación); y

− el nombre arbitrario v indica el significado personalizado de una relación.

API WEB SOAP

101. La presente norma recomienda el estilo de arquitectura REST como enfoque preferido para el diseño de las API.
Las arquitecturas RESTful generalmente se diseñan, amplían e integran más fácilmente que las SOAP. Se incluye, no
obstante, la arquitectura SOAP para que la norma sea más exhaustiva; no se proporcionan ejemplos ni casos de uso.

102. Una API web SOAP es una aplicación de software identificada por URI, cuyas interfaces y vinculaciones pueden ser
definidas, descritas y descubiertas por objetos XML. También admite interacciones directas con otras aplicaciones de
software que utilizan mensajes basados en XML a través de protocolos de Internet como SOAP y HTTP.

103. Un contrato basado en SOAP se describe en un lenguaje de descripción de servicios web (WSDL) establecido en
un documento normativo del W3C. A lo largo del presente documento se utilizará WSDL para hacer referencia al contrato
del servicio web definido en el documento WSDL.

104. Hay dos enfoques de desarrollo de los servicios web: contract-last (contrato al final, también conocido como code-
first, código al principio) y contract-first (contrato al principio). Cuando se utiliza el enfoque de contract-last, se empieza con
el código, y a partir de él se desarrolla el contrato de servicio web. Con el enfoque de contract-first, se empieza con el
contrato WSDL, y se utiliza el código para implementar dicho contrato.

Normas generales

105. El perfil de interoperabilidad de servicios web o perfil WS-I es una de las normas más importantes en lo que
respecta a las API SOAP, y proporciona una referencia para formular las especificaciones de servicios web que pueden
funcionar conjuntamente. La WS-I proporciona directrices sobre cómo los servicios están expuestos entre sí y cómo
transfieren la información (lo que se denomina mensajería). Es un perfil para implementar versiones específicas de algunos
de los estándares de servicios web más importantes, como WSDL, SOAP o XML. La adhesión a determinados perfiles
indica implícitamente la adhesión a versiones específicas de esos estándares de servicios web. WS-I Basic Profile v1.1
proporciona una guía para el uso de XML 1.0, HTTP 1.1, UDDI, SOAP 1.1, WSDL 1.1 y UDDI 2.0. WS-I Basic Profile 2.0
constituye una guía para utilizar SOAP 1.2, WSDL 1.1, UDDI 2.0, WS-Addressing y MTOM. SOAP 1.2 ofrece un modelo de

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.36

es / 03-90-01 Fecha: diciembre de 2025

procesamiento claro y contribuye a una mejor interoperabilidad. WSDL 2.0 se diseñó para resolver los problemas de
interoperabilidad encontrados en WSDL 1.1 utilizando enlaces SOAP 1.2 mejorados.

[WS-01] Todos los WSDL DEBEN ajustarse al WS-I Basic Profile 2.0. PUEDE utilizarse WSDL 1.2.

106. Un enlace SOAP WSDL puede ser de estilo llamada a procedimiento remoto (RPC) o de estilo documento, y un
enlace SOAP puede tener un uso codificado o literal, por lo que hay cinco modelos de estilo/uso posibles: RPC/codificado
(RPC/encoded), RPC/literal (RPC/literal), documento/codificado (document/encoded), documento/literal (document/literal), y
documento/literal envuelto (document/literal wrapped).

[WS-02] Los servicios DEBEN seguir los modelos de estilo documento y de uso literal (ya sea
documento/literal o documento/literal envuelto). Cuando haya gráficos, DEBE utilizarse el modelo
RPC/codificado.

[WS-03] Cuando hay casos de uso excepcionales, como las operaciones WDSL sobrecargadas, DEBERÍAN
utilizarse todos los demás estilos.

107. La parte WSDL concreta debería separarse de la parte WSDL abstracta para proporcionar una interfaz más modular
y flexible. La parte WSDL abstracta define los tipos de datos, los mensajes, las operaciones y el tipo de puerto. La parte
WSDL concreta define el enlace, el puerto y el servicio.

[WS-04] El WSDL DEBERÍA separarse en una parte abstracta y otra concreta.

[WS-05] Todos los tipos de datos DEBERÍAN definirse en un archivo XSD e importarse en la parte WSDL
abstracta.

[WS-06] La parte WSDL concreta DEBE definir un solo servicio con un puerto.

Esquemas

108. Los esquemas utilizados en el WSDL deben ajustarse a la Norma ST.96 de la OMPI. A efectos de reutilización y
modularidad, los esquemas deben ser documentos separados que se incluyan o importen en el WSDL, en lugar de ser
definidos directamente en el WSDL. Esto permitirá realizar cambios en la estructura XML sin modificar el WSDL.

[WS-07] El esquema definido en el elemento wsdl:types DEBE ser importado de un archivo de esquema
independiente, para permitir la modularidad y la reutilización.

[WS-08] La importación de un esquema externo DEBE implementarse usando el elemento xsd:import, y no
el elemento xsd:include.

[WS-09] El elemento xsd:any NO DEBE utilizarse para especificar un elemento raíz en el cuerpo del
mensaje.

[WS-10] El espacio de nombres de destino para el WSDL (atributo targetNamespace en
wsdl:definitions) DEBE ser diferente del espacio de nombres de destino del esquema (atributo
targetNamespace en xsd:schema).

[WS-11] Las peticiones y respuestas (convención de nombres, formato de mensajes, estructura de datos y
diccionario de datos) DEBERÍAN ajustarse a la Norma ST.96 de la OMPI.

Nombres y versiones

109. En la asignación de nombres a los servicios y a los elementos WSDL deberían aplicarse convenciones de nombres
adecuadas, conformes con las aplicadas en la Norma ST.96 de la OMPI.

[WS-12] Los nombres de servicios DEBEN seguir la convención upper camel case y tener el sufijo ‘Service’.
Por ejemplo, https://wipo.int/PatentsService.

[WS-13] Los nombres de elementos WSDL —message (mensaje), part (parte), porType (tipo de puerto),
operation (operación), input (entrada), output (salida) y binding (enlace)— DEBERÍAN seguir
la convención upper camel case.

[WS-14] Los nombres de mensajes de petición DEBERÍAN tener el sufijo ‘Request’.

[WS-15] Los nombres de mensajes de respuesta DEBERÍAN tener el sufijo ‘Response’.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.37

es / 03-90-01 Fecha: diciembre de 2025

[WS-16] Los nombres de operaciones DEBERÍAN seguir el formato <Verb><Object>{<Qualifier>},
donde <Verb> indica la operación (preferiblemente Get, Create, Update, o Delete, según
corresponda) sobre el <Object> de la operación, seguido opcionalmente por un <Qualifier> del
<Object>.

110. Todos los nombres de operaciones tendrán al menos dos partes. Se podrá incluir una tercera parte opcional para
aclarar y/o especificar el propósito de la operación. Las tres partes son: <Verb>, <Object> y <Qualifier>
(opcional). Cada parte se describe en detalle a continuación.

Verbo. El nombre de cada operación comenzará con un verbo. A continuación figuran ejemplos de verbos de uso
común:

Verbo Descripción Ejemplo

Get Obtener un único objeto GetBibData
Create Obtener un objeto nuevo CreateBibData

Update Actualizar un objeto UpdateBibData
Delete Eliminar un objeto DeleteCustomer

Objeto. El sustantivo que sigue al verbo será una descripción sucinta e inequívoca de la función de la operación. El
objetivo es que los consumidores entiendan sin ambigüedades lo que produce la operación. Dado que la definición
de algunas entidades no es común en los distintos centros de costes, el objeto puede ser un campo compuesto en
el que el primer nodo es el centro de costes y el segundo nodo la entidad. Por ejemplo, PatentCustomer.

Calificador. El propósito del atributo opcional qualifier del objeto es aclarar el dominio operacional o temático
(por ejemplo, GetCustomerList). Get indica la operación que se realizará para el cliente y List especifica que el
propósito es obtener una lista de clientes y no solo un cliente como en GetCustomer.

111. De acuerdo con los principios de diseño orientado a servicios, los proveedores y consumidores de servicios
deberían evolucionar de forma independiente. El consumidor de servicios no debería verse afectado por cambios menores
(retrocompatibles) por parte del proveedor de servicios. Por consiguiente, el versionado de servicios debería utilizar solo
números de versión mayores. Para las API internas (por ejemplo, para el desarrollo y las pruebas) también pueden
utilizarse versiones menores, como las versiones semánticas.

[WS-17] El nombre del archivo WSDL DEBERÍA ajustarse al siguiente patrón: <nombre del
servicio>_V<número de versión mayor>.

[WS-18] El espacio de nombres del archivo WSDL DEBERÍA contener la versión del servicio. Por ejemplo,
https://wipo.int/PatentsService/V1”.

112. La descripción del servicio y sus operaciones se proporciona como documentación WSDL.

[WS-19] El elemento wsdl:documentation DEBERÍA utilizarse en el WSDL con la descripción del servicio
(como primer elemento hijo de wsdl:definitions en el WSDL) y sus operaciones.

Diseño del contrato de servicio web

113. Un contrato de servicio web debería incluir una interfaz técnica compuesta por un lenguaje de descripción de
servicios web (WSDL), definiciones de esquemas XML y una política de servicios web (WS-Policy), así como una interfaz
no técnica integrada por uno o más documentos de descripción de servicios.

114. El WSDL, parte del contrato de servicio, debe ser diseñado antes de cualquier desarrollo de código. En ningún caso
deber ser generado automáticamente a partir del código. La máxima debe ser contract-first y no code-first. Todos los
contratos de servicio web deben ajustarse al WS-I Basic Profile. Cualquier proyecto que se genere automáticamente a partir
del código podrá ser objeto de modificaciones para asegurar su conformidad con las normas.

Adhesión de políticas a las definiciones WSDL

115. Los contratos de servicios web pueden ampliarse con políticas de seguridad que incluyen limitaciones, condiciones
y cualidades complementarias normalmente relacionadas con el funcionamiento de los servicios. Las políticas de seguridad
pueden formularse en formato legible por personas y formar parte de un acuerdo de nivel de servicio complementario, o en
formato legible por máquinas en el momento de ejecución. Las políticas legibles por máquinas se definen usando el
lenguaje WS-Policy y las especificaciones conexas.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.38

es / 03-90-01 Fecha: diciembre de 2025

[WS-20] Las definiciones de políticas DEBEN figurar por separado en un documento de definición de WS-
Policy, al que se hace referencia en el documento WSDL mediante el elemento
wsp:PolicyReference.

[WS-21] Las políticas globales o específicas de un dominio DEBERÍAN ser independientes y aplicables a
múltiples servicios.

[WS-22] Los puntos de adhesión de políticas DEBERÍAN ser compatibles con WSDL 1.1 o una versión
posterior, preferiblemente la versión 2.0, los elementos de los puntos de adhesión y los temas de
políticas conexas (servicio, punto final, operación y mensaje).

SOAP - Seguridad de servicios web

116. La seguridad de servicios web (WSS): seguridad de mensajes SOAP (WSS: SOAP Message Security) consiste en
un conjunto de mejoras en la mensajería SOAP que proporciona integridad y confidencialidad a los mensajes. WSS: SOAP
Message Security es ampliable y puede incluir una serie de modelos de seguridad y tecnologías de cifrado. WSS: SOAP
Message Security proporciona tres mecanismos principales que pueden utilizarse de forma independiente o conjuntamente:

− La posibilidad de enviar tokens de seguridad como parte de un mensaje, y de asociarlos con el contenido del
mensaje;

− La posibilidad de proteger el contenido de un mensaje de modificaciones no autorizadas y no detectadas
(integridad del mensaje); y

− La posibilidad de proteger el contenido de un mensaje de una divulgación no autorizada (confidencialidad del
mensaje).

WSS: SOAP Message Security puede utilizarse conjuntamente con otras extensiones de servicios web y protocolos
específicos de cada aplicación con el fin de satisfacer una serie de requisitos de seguridad.

[WS-23] Los servicios web que utilizan mensajes SOAP DEBERÍAN estar protegidos de acuerdo con las
recomendaciones de WSS: SOAP Message Security.

FORMATOS DE TIPOS DE DATOS

117. En la presente norma se recomiendan formatos de tipos de datos primarios, como la hora, la fecha y el idioma,
conforme a las recomendaciones de las Normas ST.96 y ST.97 de la OMPI, que se utilizan para las peticiones y respuestas
en XML y JSON, respectivamente, y para los parámetros de consulta.

[CS-01] Los objetos de hora DEBEN tener el formato especificado en la Norma RFC 9557 del IETF (es un
perfil de la ISO 8601).

[CS-02] La información de la zona horaria junto con la hora DEBERÍAN utilizarse tal y como se especifica en
la RFC 9557 del IETF (es un perfil de la norma ISO 8601). El formato de la hora junto con la zona
horaria es hh:mm:ss±hh:mm. Por ejemplo: 20:54:21+00:00

[CS-03] Los objetos de fecha DEBEN tener el formato especificado en la RFC 9557 del IETF (es un perfil de
la norma ISO 8601). El formato de fecha es AAAA-MM-DD. Por ejemplo: 2018-10-19

[CS-04] Los objetos de fecha y hora (es decir, de marca de tiempo) DEBEN tener el formato especificado en
la RFC 9557 del IETF (es un perfil de la norma ISO 8601).

[CS-05] La zona horaria aplicable a la fecha y hora DEBERÍA utilizarse tal y como se especifica en la RFC
9557 del IETF (es un perfil de la norma ISO 8601). El formato de la fecha con la hora y la zona
horaria es AAAA-MM-DDThh:mm:ss±hh:mm. Por ejemplo: 2017-02-14T20:54:21+00:00

[CS-06] DEBE usarse la Norma ISO 4217 alfa-3: Códigos de dividas para representar las divisas. La
precisión del valor (es decir, el número de dígitos después del punto decimal) PUEDE variar
dependiendo de los requisitos operacionales.

[CS-07] DEBEN utilizarse los códigos de dos letras de la Norma ST.3 de la OMPI para referirse a las oficinas
de propiedad intelectual, los Estados y otras entidades y organizaciones, así como a los países o las
organizaciones designados y prioritarios.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.39

es / 03-90-01 Fecha: diciembre de 2025

[CS-08] DEBE utilizarse la Norma ISO 3166-1 alfa-2: Códigos de representación de nombres de países y sus
subdivisiones para representar los nombres de países, dependencias y demás zonas de especial
interés geopolítico, a partir de las listas de nombres de países de las Naciones Unidas.

[CS-09] DEBE usarse la Norma ISO 639-1 alfa-2: Códigos de representación de nombres de idiomas para los
códigos de idiomas.

[CS-10] DEBERÍAN utilizarse las unidades de medida conforme a lo descrito en el Unified Code for Units of
Measure (basado en las definiciones de la Norma ISO 80000). Por ejemplo, la unidad de medida de
la masa es el kilogramo (kg).

[CS-11] Los caracteres utilizados en las enumeraciones DEBEN limitarse al conjunto siguiente: {a-z, A-Z, 0-9,
punto ".", coma ",", espacio " ", guion "-" y guion bajo "_"}.

[CSJ-12] DEBEN utilizarse los términos de representación del Anexo VI para los nombres de propiedades
atómicas.

[CSJ-13] Las siglas y las abreviaturas que aparecen al principio del nombre de una propiedad DEBEN estar en
minúsculas. El resto de siglas y abreviaturas y valores de enumeraciones DEBEN aparecer en
mayúsculas.

CONFORMIDAD

118. La presente norma está diseñada como un conjunto de normas de diseño y convenciones que se pueden incorporar
a las API para servicios web existentes o nuevas con objeto de proporcionar una funcionalidad común. No todos los
servicios serán compatibles con todas las convenciones definidas en la norma debido a cuestiones comerciales (por
ejemplo, es posible que no se requiera la función calidad de servicio) o a limitaciones técnicas (por ejemplo, es posible que
ya se utilice OAuth 2.0).

119. La presente norma define dos niveles de conformidad: A y AA. Conviene tener en cuenta que las normas de diseño
que incluyen la palabra PUEDE no se tienen en cuenta a la hora de determinar la conformidad.

120. Se recomienda que las API para servicios web admitan tantas funcionalidades adicionales, más allá de su nivel de
conformidad, como sean apropiadas para su escenario de uso previsto.

121. Se definen dos niveles de conformidad:

− Nivel A: el nivel de conformidad A indica que la API sigue las normas generales de diseño (RSG) obligatorias,
que en la presente norma son las que incluyen la palabra DEBE. Además, también se deben cumplir las normas
específicas del tipo de respuesta devuelta. A continuación se indican los subniveles de conformidad:

• Nivel AJ: si la respuesta devuelta está en el formato JSON de la Norma ST.97, deben cumplirse
todas las normas generales de diseño (RSG) que incluyan la palabra DEBE, así como todas las
normas específicas del formato de respuesta JSON (RSJ) que incluyan la palabra DEBE;

• Nivel AX: si la respuesta devuelta es una instancia XML de la Norma ST.96, deben cumplirse todas
las normas generales de diseño (RSG) que incluyan la palabra DEBE, así como todas las normas
específicas del formato de respuesta XML (RSX) que incluyan la palabra DEBE; y

• Nivel A: si la respuesta devuelta está en formato JSON o XML, deben cumplirse todas las normas
generales de diseño (RSG) que incluyan la palabra DEBE, así como todas las normas de diseño
específicas del formato de respuesta JSON (RSJ) que incluyan la palabra DEBE y todas las normas
de diseño específicas del formato de respuesta XML (RSX) que incluyan la palabra DEBE.

− Nivel AA: el nivel de conformidad AA indica que la API satisface el nivel A y se siguen todas las normas de
diseño recomendadas, que en la presente norma son las que incluyen la palabra DEBERÍA. Al igual que en el
nivel A, hay subniveles de conformidad en función del tipo de respuesta, a saber:

• Nivel AAJ: se cumple el nivel AJ, así como las normas de diseño recomendadas (que incluyen la
palabra DEBERÍA) específicas del formato de respuesta JSON; y

• Nivel AAX: se cumple el nivel AX, así como las normas de diseño recomendadas (que incluyen la
palabra DEBERÍA) específicas del formato de respuesta XML.

122. En el Anexo I figura una matriz de trazabilidad que relaciona las normas de diseño con los niveles de conformidad.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.40

es / 03-90-01 Fecha: diciembre de 2025

MATERIAL DE REFERENCIA

Normas de la OMPI

Norma ST.3 de la OMPI Códigos de dos letras recomendados para la representación de Estados, otras entidades y
organizaciones intergubernamentales

Norma ST.96 de la OMPI Tratamiento en XML de la información relativa a la propiedad intelectual

Norma ST.97 de la OMPI Tratamiento en JSON de la información relativa a la propiedad intelectual

Normas y convenciones

Recuerde que estas normas externas tienden a evolucionar de manera independiente. A medida que evolucionan las
normas del IETF, la documentación del IETF indica cuáles han quedado obsoletas.

RFC 2518 del IETF: Extensiones HTTP para autoría distribuida – WEBDAV - https://www.rfc-editor.org/rfc/rfc2518

RFC 3986 del IETF Identificador uniforme de recursos (URI): Sintaxis genérica – www.ietf.org/rfc/rfc3986.txt

RFC 4918 del IETF: Extensiones HTTP para autoría distribuida y control de versiones web (WebDAV) –
https://www.rfc-editor.org/rfc/rfc4918

RFC 5842 del IETF: Extensiones de enlace a la autoría distribuida y control de versiones web (WebDAV) –
https://www.rfc-editor.org/rfc/rfc5842

RFC 5789 del IETF: Método PATCH para HTTP – https://tools.ietf.org/rfc/rfc5789.txt

RFC 6648 del IETF Eliminación del prefijo X- y construcciones similares en los protocolos de aplicación -
https://tools.ietf.org/rfc/rfc6648.txt

RFC 7396 del IEFT Parche de fusión JSON – https://www.rfc-editor.org/rfc/rfc7396

RFC 8144 del IETF: Uso del campo de encabezado preferido en la autoría distribuida y el control de versiones
web (WebDAV) – https://www.rfc-editor.org/rfc/rfc8144

RFC 8288 del IETF: Enlace web – https://datatracker.ietf.org/doc/html/rfc8288

RFC 8297 del IETF: Código de estado HTTP para indicar sugerencias – https://www.rfc-editor.org/rfc/rfc8297

RFC 9110 del IETF Semántica HTTP – https://www.ietf.org/rfc/rfc9110.pdf

RFC 9111 del IETF Almacenamiento en caché HTTP – https://datatracker.ietf.org/doc/html/rfc9111

RFC 9557 del IETF Fecha y hora en Internet: Marcas de tiempo – https://datatracker.ietf.org/doc/html/rfc9557

ISO 639-1 Códigos de idioma – https://www.iso.org/iso-639-language-code

ISO 3166-1 alpha-2 Códigos de dos letras para países. – https://www.iso.org/iso-3166-country-codes.html

ISO 4217 Códigos de divisas – www.iso.org/iso/home/standards/currency_codes.htm

ISO 8601 Formatos de fecha y hora – https://www.iso.org/iso-8601-date-and-time-format.html

IANA (Autoridad de Asignación de Números de Internet): https://www.iana.org/assignments/http-status-codes/http-status-
codes.xhtml

Odata https://www.odata.org/

Modelo de entidad del servicio de metadatos OASIS OData –
http://docs.oasisopen.org/odata/odata/v4.0/os/models/MetadataService.edmx

Formato JSON de OASIS OData versión 4.0. Editado por Ralf Handl, Michael Pizzo y Mark Biamonte. Última versión –
https://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx

Formato Atom de OASIS OData versión 4.0. Editado por Martin Zurmuehl, Michael Pizzo y Ralf Handl. Última versión –
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html

https://www.wipo.int/documents/d/standards/docs-es-03-03-01.pdf
https://www.wipo.int/documents/d/standards/docs-es-03-96-01.pdf
https://www.wipo.int/documents/d/standards/docs-es-03-97-01.pdf
https://www.rfc-editor.org/rfc/rfc2518
file://Wipogvafs01/DAT2/ORGIPIG/SHARED/HANDBOOK/CONTENT/3.%20WIPO%20Standards/st%2090/www.ietf.org/rfc/rfc3986.txt
https://www.rfc-editor.org/rfc/rfc4918
https://www.rfc-editor.org/rfc/rfc5842
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/rfc/rfc6648.txt
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc8144
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/rfc/rfc8297
https://www.ietf.org/rfc/rfc9110.pdf
https://datatracker.ietf.org/doc/html/rfc9111
https://datatracker.ietf.org/doc/html/rfc9557
https://www.iso.org/iso-639-language-code
https://www.iso.org/iso-3166-country-codes.html
http://www.iso.org/iso/home/standards/currency_codes.htm
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.odata.org/
http://docs.oasisopen.org/odata/odata/v4.0/os/models/MetadataService.edmx
https://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.41

es / 03-90-01 Fecha: diciembre de 2025

OASIS OData versión 4.0

− Parte 1: Protocolo – http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-
protocol.html

− Parte 2: Convenciones URL – http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-
os-part2-url-conventions.html

− Parte 3: Lenguaje común de definición de esquemas (CSDL) – http://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

Componentes ABNF de OASIS: Reglas de construcción de ABNF de OData versión 4.0 con ejemplos – http://docs.oasis-
open.org/odata/odata/v4.0/os/abnf/

Componentes del vocabulario OASIS: Vocabulario básico de OData, vocabulario de medidas de OData y vocabulario de
capacidades de OData – http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Esquemas XML de OASIS:

Esquema XML de OData EDMX y OData EDM http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/

OASIS SAML 2.0 http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

RAML (lenguaje de modelado de API ReSTful) http://raml.org

Iniciativa OpenAPI www.openapis.org

Modelo de madurez de API REST de Richardson https://martinfowler.com/articles/richardsonMaturityModel.html

HAL http://stateless.co/hal_specification.html

JSON-LD https://json-ld.org

Recopilación+formato de documento JSON http://amundsen.com/media-types/collection/format/

BadgerFish http://badgerfish.ning.com/

Versionado semántico https://semver.org/

REST https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

CQL https://en.wikipedia.org/wiki/Contextual_Query_Language

Z39.50 https://www.loc.gov/z3950/agency/Z39-50-2003.pdf

Perfil básico de WS-I 2.0 http://ws-i.org/profiles/BasicProfile-2.0-2010-11-09.html

W3C SOAP 1.2 Parte 1 Marco de mensajería – https://www.w3.org/TR/soap12-part1/

W3C SOAP 1.2 Parte 2 Adjuntos – https://www.w3.org/TR/soap12-part2/

W3C WSDL versión 2.0 Parte 1 Lenguaje básico – https://www.w3.org/TR/wsdl20/

W3C CORS https://www.w3.org/TR/cors/

Parámetros Matric de W3C https://www.w3.org/DesignIssues/MatrixURIs.html

API REST de las Oficinas de PI

OEP: servicios de patentes abiertas OPS v. 3.2 https://developers.epo.org

USPTO PatentsView https://patentsview.org

OMPI: ePCT v. 1.1 https://pct.wipo.int/

EUIPO: TMview https://www.tmdn.org/tmview/#/tmview

EUIPO: Designview https://www.tmdn.org/tmdsview-web/#/dsview

http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://raml.org/
http://www.openapis.org/
https://martinfowler.com/articles/richardsonMaturityModel.html
http://stateless.co/hal_specification.html
https://json-ld.org/
http://amundsen.com/media-types/collection/format/
http://badgerfish.ning.com/
https://semver.org/
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Contextual_Query_Language
https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
http://ws-i.org/profiles/BasicProfile-2.0-2010-11-09.html
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part2/
https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/cors/
https://www.w3.org/DesignIssues/MatrixURIs.html
https://developers.epo.org/
https://patentsview.org/
https://pct.wipo.int/
https://www.tmdn.org/tmview/#/tmview
https://www.tmdn.org/tmdsview-web/#/dsview

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.42

es / 03-90-01 Fecha: diciembre de 2025

TMclass https://tmclass.tmdn.org/ec2/

DESIGNclass https://euipo.europa.eu/designclass/

API REST de empresas y directrices de diseño

Facebook https://developers.facebook.com/docs/graph-api/reference

GitHub https://developer.github.com/v3

Guía de diseño de las API de Google https://cloud.google.com/apis/design/

Azure https://docs.microsoft.com/en-us/rest/api/

OpenAPI https://swagger.io/docs/specification/about/

OData http://www.odata.org/documentation/

API de JSON http://jsonapi.org/format/

Diseño de las API de Microsoft https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design

API REST de JIRA https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples

API REST de Confluence https://developer.atlassian.com/server/confluence/

API de Ebay https://developer.ebay.com/api-docs/static/ebay-rest-landing.html

Servicios de datos REST de Oracle http://www.oracle.com/technetwork/developer-tools/rest-data-
services/overview/index.html

API REST de PayPal https://developer.paypal.com/docs/api/overview/

Datos en la web: mejores prácticas https://www.w3.org/TR/dwbp/#intro

Directrices de SAP para la futura armonización de las API REST https://help.sap.com/docs/api-style-guide/sap-api-style-
guide-public/rest-and-odata-api-documentation

API de GitHub https://developer.github.com/v3/

Zalando https://github.com/zalando/ReSTful-api-guidelines

Dropbox https://www.dropbox.com/developers

X https://docs.x.com/home

Otros

CQRS https://martinfowler.com/bliki/CQRS.html

UIT https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx

Referencias sobre seguridad REST de OWASP https://www.owasp.org/index.php/REST_Security_Cheat_Sheet

DDD https://martinfowler.com/bliki/BoundedContext.html

Principios REST https://en.wikipedia.org/wiki/Representational_state_transfer

Principio de abierto/cerrado https://es.wikipedia.org/wiki/Principio_de_abierto/cerrado

¿Qué estilo de WSDL debo utilizar? https://www.ibm.com/developerworks/library/ws-whichwsdl/

Gobierno de Nueva Zelandia

Normas y directrices API https://www.digital.govt.nz/standards-and-guidance/technology-and-
architecture/application-programming-interfaces-apis/api-guidelines

https://tmclass.tmdn.org/ec2/
https://euipo.europa.eu/designclass/
https://developers.facebook.com/docs/graph-api/reference
https://developer.github.com/v3
https://cloud.google.com/apis/design/
https://docs.microsoft.com/en-us/rest/api/
https://swagger.io/docs/specification/about/
http://www.odata.org/documentation/
http://jsonapi.org/format/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples
https://developer.atlassian.com/server/confluence/
https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
https://developer.paypal.com/docs/api/overview/
https://www.w3.org/TR/dwbp/#intro
https://help.sap.com/docs/api-style-guide/sap-api-style-guide-public/rest-and-odata-api-documentation
https://help.sap.com/docs/api-style-guide/sap-api-style-guide-public/rest-and-odata-api-documentation
https://developer.github.com/v3/
https://github.com/zalando/ReSTful-api-guidelines
https://www.dropbox.com/developers
https://docs.x.com/home
https://martinfowler.com/bliki/CQRS.html
https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.digital.govt.nz/standards-and-guidance/technology-and-architecture/application-programming-interfaces-apis/api-guidelines
https://www.digital.govt.nz/standards-and-guidance/technology-and-architecture/application-programming-interfaces-apis/api-guidelines

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.43

es / 03-90-01 Fecha: diciembre de 2025

Referencias para la prevención de secuencias entre sitios
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Referencias de OWASP https://cheatsheetseries.owasp.org/

Norma de firma digital (DSS) https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf

Seguridad de mensajes 1.0 en SOAP, norma 200401 de OASIS http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf

Principios de diseño de servicios de SOA, Thomas Erl (2008)

[Sigue el Anexo I]

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
https://docs.microsoft.com/en-us/rest/api/
https://docs.microsoft.com/en-us/rest/api/

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.i.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO I

LISTA DE NORMAS Y CONVENCIONES DE DISEÑO DE SERVICIOS WEB RESTFUL E INDICADORES DE
CONFORMIDAD

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

El Anexo I de la Norma ST.90 de la OMPI proporciona la lista de reglas y convenciones de diseño para servicios web
RESTful, así como los indicadores correspondientes que identifican los requisitos básicos de conformidad en términos de
nivel de conformidad y compatibilidad con la aplicación de la API de servicios web.

La lista de normas y convenciones de diseño de servicios web RESTful e indicadores de conformidad está disponible en:
https://www.wipo.int/documents/d/standards/docs-es-03-90-01-annex-i-v2-0.xlsx

− La letra X en la columna C del cuadro indica que se debe cumplir la regla de diseño para lograr el cumplimiento
del nivel AJ (para una respuesta JSON).

− La letra X en la columna D del cuadro indica que se debe cumplir la regla de diseño para lograr el cumplimiento
del nivel AX (para una respuesta XML).

− La letra X en la columna E del cuadro indica que se debe cumplir la regla de diseño para lograr el cumplimiento
del nivel AAJ (para una respuesta JSON).

− La letra X en la columna F del cuadro indica que se debe cumplir la regla de diseño para lograr el cumplimiento
del nivel AAX (para una respuesta XML).

[Nota editorial: Para alcanzar el nivel A de conformidad, solo es necesario seguir las reglas que tienen una X en las
columnas C y D. Para alcanzar el nivel AA de conformidad, es necesario seguir las reglas que tienen una X en las
columnas E y F. La tercera letra indica el tipo de respuesta proporcionada.]

[Sigue el Anexo II]

https://www.wipo.int/documents/d/standards/docs-es-03-90-01-annex-i-v2-0.xlsx

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.ii.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO II

VOCABULARIO DE PI RELATIVO A LA ARQUITECTURA REST

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

1. En el Cuadro 1 se proporciona vocabulario de PI, a saber, ejemplos de parámetros de petición de servicios básicos
RESTful. Es posible que las oficinas de PI tengan que desarrollar peticiones más complejas y cargas útiles de respuesta
variadas en función de sus necesidades operativas. Los parámetros de este cuadro son ejemplos de elementos de la
Norma ST.97 utilizados para una respuesta JSON. Los esquemas JSON completos de la Norma ST.97 sobre propiedad
intelectual pueden consultarse en el Anexo II de la Norma ST.97 de la OMPI o, alternativamente, cuando se hace referencia
a API basadas en XML, estos parámetros corresponden a los elementos de la Norma ST.96 en formato
minúsculaMayúscula. El diccionario completo de datos de PI y los esquemas XML de PI de la Norma ST.96 pueden
consultarse en: https://www.wipo.int/standards/en/st96/ .

[Nota editorial: En el futuro, está previsto proporcionar un enlace a una lista más exhaustiva de vocabulario de PI relativo a
REST para XML y JSON, que se actualizará de forma continua a medida que se vayan desarrollando elementos y
vocabulario de PI.]

Cuadro 1. Ejemplos de vocabulario de las API

Dominio
de
actividad

Nombre
del
recurso

Nombre del parámetro Descripción

TODO

/tradema
rks
/patents
/designs

st13ApplicationNumber

Número de solicitud de PI presentada en el formato
establecido en la Norma ST.13 de la OMPI, a saber,
una cadena de varios valores, incluidos el número de
solicitud nacional, el tipo de PI y el país/organización.

TODO

/tradema
rks
/patents
/designs

applicationNumber Número de solicitud de PI presentada en el formato
de la oficina nacional.

MÚLTIPLE
/tradema
rks/desi
gns

internationalRegistrationNu
mber

Número del registro internacional correspondiente a
los derechos de PI. En el caso de las marcas, este
tema es competencia del Sistema de Madrid, y, en el
caso de los dibujos y modelos industriales, es
competencia del Sistema de La Haya.

TODO

/tradema
rks/pate
nts
/designs

availableDocument
Entrada de documento único relevante para los
criterios de búsqueda proporcionados al servicio
DocList de la API.

TODO

/trademar
ks
/patents
/designs

sortingCriteria Criterio de ordenación utilizado por el servicio
DocList de la API.

TODO

/tradema
rks/pate
nts
/designs

receivingOfficeCode Código de la oficina de PI, en el formato establecido
en la Norma ST.2 de la OMPI.

https://www.wipo.int/documents/d/standards/docs-es-03-97-01.pdf
https://www.wipo.int/standards/en/st96/
https://www.wipo.int/documents/d/standards/docs-es-03-13-01.pdf
https://www.wipo.int/documents/d/standards/docs-es-03-02-01.pdf

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.ii.2

es / 03-90-01 Fecha: diciembre de 2025

TODO

/tradema
rks/pate
nts
/designs

receivingOfficeDate Fecha de recepción en la oficina de PI.

Marcas /tradema
rks applicationDate Fecha de solicitud.

 registrationDate Fecha de registro en la oficina de PI.

 markFeatureCategory Categoría de la característica de la marca.

 markCurrentStatusCode Código correspondiente a la situación jurídica en que
se encuentra la solicitud.

 markCurrentStatusDate Fecha de consulta de la situación jurídica en que se
encuentra la solicitud.

Patentes /patents filingDate Fecha de presentación de la solicitud.

 grantPublicationDate Fecha de publicación de la concesión.

 fileReferenceIdentifier Número de referencia de los solicitantes.

 applicationBodyStatus Situación del organismo solicitante.

 statusEventData Datos sobre una incidencia relativa a la situación
jurídica de una solicitud de patente específica.

 keyEventCode
Código relativo a una actividad general de alto nivel
que abarca los casos más generales e importantes
de una categoría.

Dibujos y
modelos
industriales

/designs applicationDate Fecha de presentación de la solicitud.

 designApplicationCurrentSta
tus

Categoría de la situación jurídica en que se
encuentra la solicitud de registro de dibujos o
modelos.

 designApplicationCurrentSta
tusDate

Fecha de consulta de la situación jurídica en que se
encuentra la solicitud.

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.ii.3

es / 03-90-01 Fecha: diciembre de 2025

2. En el Cuadro 2 que figura a continuación se especifican los parámetros de consulta técnica que se deberían aplicar
a todos los servicios de las API REST.

Cuadro 2. Vocabulario técnico de las API

Parámetr
o de
consulta/
ruta

Parámetro
Valor
Tipo de
datos

Restricción

Formato Descripción Norma de

diseño

format cadena

type/subtype;
parameter=value

conforme a la Norma
RFC 7231, sección
3.1.1.1. (Tipo de
medios)

Se utiliza para la negociación del
tipo de contenido (debe darse
preferencia a un encabezado de
petición HTTP)

[RSG-19]

v cadena v%, donde % es un
entero positivo

Se utiliza para el versionado de
servicios (debe darse preferencia
a la indicación de la versión
mediante un segmento de la ruta
del URL)

[RSG-64]

limit entero positivo limit=10 Tamaño de página utilizado para
la paginación [RSG-73]

offset entero
positivo; el
valor por
defecto es 0

offset=5 Desplazamiento utilizado para la
paginación [RSG-73]

sort

lista de
cadenas
separadas
por comas

valores
posibles:

− as
c

− de
sc

sort=key1:asc,key2
:desc

Criterios multiatributos de
ordenación

[RSG-74] a
[RSG-76]

expand

lista de
cadenas
separadas
por comas

 expand=key1,key2 Se utiliza para expandir el cuerpo
del contenido devuelto [RSG-77]

count booleano
el valor por
defecto es
false

count=true
Devuelve el número de elementos
de una colección (puede ser
mediante una función inline)

[RSG-81]

apiKey cadena apiKey=abcdef12345

Se utiliza para indicar una clave
de API web (debe darse
preferencia a un encabezado
HTTP)

[RSG-137] a
[RSG-138]

[Sigue el Anexo III]

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.iii.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO III

DIRECTRICES DE LAS API WEB RESTFUL Y MODELO DE CONTRATO DE SERVICIO

Versión 1.1

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su décima sesión, el 25 de noviembre de 2022

1. En el Anexo III se ofrecen dos modelos de especificaciones de API conformes a la norma que tienen por objeto
orientar a las Oficinas de PI que deseen desarrollar servicios web conformes a esta norma. A continuación y en los
Apéndices A y B se ofrecen detalles sobre los dos modelos de ejemplo.

2. Cabe señalar que los modelos de ejemplo se han elaborado con un planteamiento híbrido de los enfoques contract-
first y de code-first.

PRIMER MODELO DE EJEMPLO: DOCLIST

3. El primero de los modelos de ejemplo está inspirado en el servicio web del sistema Office Open Portal Dossier
(OPD), provisto del mismo nombre, de las Oficinas de la Cooperación Pentalateral (IP5)12. El servicio DocList de las API
proporciona una lista de los documentos de patente asociados a como mínimo un número de solicitud o de publicación.

SEGUNDO MODELO DE EJEMPLO: SITUACIÓN JURÍDICA DE LAS PATENTES

4. El segundo de los modelos de ejemplo es una API sobre la situación jurídica de las patentes, que proporciona el
historial de incidencias relativas a la situación jurídica de una solicitud determinada o información detallada sobre una
incidencia concreta relativa a la situación jurídica.

[Siguen los apéndices A y B del Anexo III]

12 Las Oficinas de la Cooperación Pentalateral (IP5) son la Administración Nacional de Propiedad Intelectual de China (CNIPA), la
Oficina Europea de Patentes (OEP), la Oficina Japonesa de Patentes (JPO), la Oficina Surcoreana de Propiedad Intelectual (KIPO)
y la Oficina de Patentes y Marcas de los Estados Unidos de América (USPTO).

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.iii.2

es / 03-90-01 Fecha: diciembre de 2025

APÉNDICE A

MODELO DE EJEMPLO DOCLIST

1. En el Apéndice A se proporciona un enlace a un fichero ZIP que incluye el documento de requisitos en el que se
describen los formatos de petición y respuesta, la especificación YAML y los componentes XSD.

2. El Apéndice A puede consultarse en:
https://www.wipo.int/standards/en/st90/annex-iii_appendix_a_V1_0.zip

APÉNDICE B

MODELO DE EJEMPLO SOBRE LA SITUACIÓN JURÍDICA DE LAS PATENTES

1. En el Apéndice B figura un enlace a un fichero ZIP que incluye la especificación de la API proporcionada en RAML,
datos de ejemplo y listas de enumeración de la Norma ST.96 de la OMPI.

2. El Apéndice B puede consultarse en:
https://www.wipo.int/standards/en/st90/annex-iii_appendix_b_V1_0.zip

[Sigue el Anexo IV

https://www.wipo.int/standards/en/st90/annex-iii_appendix_a_V1_0.zip
https://www.wipo.int/standards/en/st90/annex-iii_appendix_b_V1_0.zip

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.iv.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO IV

MEJORES PRÁCTICAS DE ARQUITECTURA DE SEGURIDAD DE ALTO NIVEL

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

1. La arquitectura de seguridad define los servicios y mecanismos que deberían aplicarse para cumplir con las
políticas y normas establecidas, al tiempo que proporciona un marco para lograr una mayor normalización y automatización
de la seguridad. Los servicios y mecanismos básicos del marco de seguridad de la API (el portal de desarrollo, el gestor de
API y la puerta de enlace de API) permiten agrupar funciones. Esas funciones o servicios pueden proporcionarse mediante
aplicaciones discretas, desarrollo de código personalizado o productos COTS, o bien aprovechando las tecnologías
existentes que pueden configurarse con ese fin. Algunas de las funciones pueden solaparse o combinarse en uno o más
productos dependiendo del proveedor utilizado.

2. La arquitectura de seguridad recomendada DEBERÍA incluir los siguientes servicios y mecanismos de seguridad
para la API:

− un portal API web para proporcionar funciones como API Discovery, API Analytics, y acceso a especificaciones
y descripciones, incluidos acuerdos de nivel de servicio, redes sociales y preguntas frecuentes;

− un gestor de API web para facilitar la administración y gestión centralizadas de los catálogos de API, la gestión
del registro y de la incorporación de varias comunidades de desarrolladores de API, la gestión del ciclo de vida
de la API, la aplicación de perfiles de seguridad predefinidos y la gestión del ciclo de vida de las políticas de
seguridad;

Público

Socios

Oficinas
de PI

Dispositivo
móvil

Navegador

servidores

Aplicación móvil

Aplicación web

Aplicación
de servidor

Aplicaciones
consumidoras

Puerta de enlace de
API

Gestor de API

Desarrolladores
de aplicaciones
consumidoras

Portal de
desarrolladores

para API

Monitoreo y análisis de la API y definición de políticas

Servidor
backend

Almacén de claves
Almacén de
identidades

Desarrolladores
de aplicaciones

internas

Desarrolladores
de API internas

Propietario del
servicio y
seguridad

PKI de confianza/Autoridad
certificadora interna

IdP

Creary exponerla API

Acceder a las API Puerta de
enlace de API

Servidor fronted

Gestor de API

Portal de
desarrolladores

para API

Publicar
aplicaciones que

consumen una API

Almacén de claves

IdP

Usar las
API

Crear las API

Externa Zona desmilitarizada Interna

PKI de confianza/Autoridad certificadora externa
Certificación cruzada o relación de confianza

Consulta y
transformación

Servicio de identidad federada

Utilizando

Almacén de
identidades

Publicar

Publicar

LDAP LDAP

Descubrir

Subscribirse

Crear aplicaciones consumidoras de API

Solicitud
de

registro

VPN Ipsec de sitio a sitio
Cifrado E2E TLS1.2 Cifrado E2E TLS1.2 Cifrado E2E TLS1.2

Lí
m

ite
sd

e
co

nf
ia

nz
a

y
co

nt
ro

le
sp

er
im

et
ra

le
s

Lí
m

ite
s d

e
co

nf
ia

nz
a

y
co

nt
ro

le
sp

er
im

et
ra

le
s

Servicio de identidad federada

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.iv.2

es / 03-90-01 Fecha: diciembre de 2025

− una puerta de enlace de API web para proporcionar capacidades de automatización de la seguridad, incluidas,
entre otras, protección centralizada contra amenazas, autenticación de API centralizada, autorización, registro,
aplicación de políticas de seguridad, cifrado de mensajes, monitorización y análisis;

− un servicio de monitoreo y análisis de la API web para proporcionar funciones como la monitorización avanzada
de servicios de API, el análisis, uso de perfiles para líneas de base de seguridad, cambios de uso y demanda;

− un almacén de credenciales para proporcionar capacidades de almacenamiento seguro de, entre otras cosas,
claves de API, secretos y certificados;

− una autoridad certificadora de confianza para emitir certificados seguros e instaurar la confianza entre las
distintas oficinas;

− un sistema de información de seguridad y gestión de eventos (SIEM) para permitir la correlación de los registros
de seguridad y el análisis y monitoreo de seguridad avanzados;

− un proveedor de identidad (IdP) para gestionar las identidades almacenadas en los directorios LDAP y activar la
autenticación; y

− un producto de análisis de aplicaciones web que realiza análisis de seguridad regulares basados en una línea
base de seguridad confiable como el OWASP Top 10.

[Sigue el Anexo V]

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.v.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO V

CÓDIGOS DE ESTADO HTTP

Versión 2.0

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su decimotercera sesión, el 14 de noviembre de 2025

1. Es importante que cada respuesta corresponda a un código de estado HTTP apropiado y que se utilicen los códigos
HTTP estándares. Además de utilizarse un código de estado apropiado, el cuerpo de la respuesta HTTP debería incluir una
descripción útil y concisa del error. Las respuestas deberían ser específicas y claras para que los consumidores puedan
llegar fácilmente a una conclusión cuando utilicen la API.

2. Los códigos de estado HTTP se definen conforme a la RFC 9110 del IETF. A continuación figura una lista de los
códigos de estado que debería devolver una API, según corresponda.

3. Se definen las siguientes categorías de códigos de estado de respuesta:

− códigos con formato 1xx: respuestas informativas. Comunican información a nivel de protocolo de transferencia;
− códigos con formato 2xx: respuestas correctas. Indican que la petición del cliente se procesó correctamente;
− códigos con formato 3xx: respuestas de redirección. Indican que el cliente debe realizar alguna otra acción para

poder completar su petición;
− códigos con formato 4xx: respuestas de error del cliente. Esta categoría de códigos de estado indica que el

cliente ha cometido un error; y
− códigos con formato 5xx: respuestas de error del servidor. Indican que se ha producido un error ocasionado por

el servidor.

4. En el siguiente cuadro se especifican los códigos de estado HTTP y los documentos RFC del IETF conexos como
referencias.

Valor Descripción Referencia

100 Continue (Continuar) [RFC 9110, sección 15.2.1]

101 Switching Protocols (Cambiando de protocolos) [RFC 9110, sección 15.2.2]

102 Processing (Procesando) [RFC 2518]

103 Early Hints (Indicaciones tempranas) [RFC 8297]

104-199 Unassigned (No asignado)

200 OK (Todo es correcto) [RFC 9110, sección 15.3.1]

201 Created (Creado) [RFC 9110, sección 15.3.2]

202 Accepted (Aceptado) [RFC 9110, sección 15.3.3]

203 Non-Authoritative Information (Información no autorizada) [RFC 9110, sección 15.3.4]

204 No Content (Sin contenido) [RFC 9110, sección 15.3.5]

205 Reset Content (Restablecer el contenido) [RFC 9110, sección 15.3.6]

206 Partial Content (Contenido parcial) [RFC 9110, sección 15.3.7]

207 Multi-Status (Multiestado) [RFC 4918]

208 Already Reported (Ya transmitido) [RFC 5842]

209-225 Unassigned (No asignado)

226 IM Used (Utilizado IM) [RFC 3229]

227-299 Unassigned (No asignado)

http://www.iana.org/go/rfc9110

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.v.2

es / 03-90-01 Fecha: diciembre de 2025

300 Multiple Choices (Opciones multiples) [RFC 9110, sección 15.4.1]

301 Moved Permanently (Movido permanentemente) [RFC 9110, sección 15.4.2]

302 Found (Encontrado) [RFC 9110, sección 15.4.3]

303 See Other (Ver otro) [RFC 9110, sección 15.4.4]

304 Not Modified (No modificado) [RFC 9110, sección 15.4.5]

305 Use Proxy (Uso de proxy) [RFC 9110, sección 15.4.6]

306 En desuso [RFC 9110, sección 15.4.7]

307 Temporary Redirect (Redireccionamiento temporal) [RFC 9110, sección 15.4.8]

308 Permanent Redirect (Redireccionamiento permanente) [RFC 9110, sección 15.4.9]

309-399 Unassigned (No asignado)

400 Bad Request (Petición incorrecta) [RFC 9110, sección 15.5.1]

401 Unauthorized (No autorizado) [RFC 9110, sección 15.5,2]

402 Payment Required (Pago requerido) [RFC 9110, sección 15.5.3]

403 Forbidden (Prohibido) [RFC 9110, sección 15.5.4]

404 Not Found (No encontrado) [RFC 9110, sección 15.5.5]

405 Method Not Allowed (Método no permitido) [RFC 9110, sección 15.5.6]

406 Not Acceptable (No aceptable) [RFC 9110, sección 15.5.7]

407 Proxy Authentication Required (Autenticación de proxy
requerida) [RFC 9110, sección 15.5.8]

408 Request Timeout (Tiempo de espera agotado para la petición) [RFC 9110, sección 15.5.9]

409 Conflict (Conflicto) [RFC 9110, sección 15.5.10]

410 Gone (Ya no disponible) [RFC 9110, sección 15.5.11]

411 Length Required (Longitud requerida) [RFC 9110, sección 15.5.12]

412 Precondition Failed (Condición previa fallida) [RFC 9110, sección 15.5.13]
[RFC 8144, sección 3.2]

413 Content Too Large (Contenido demasiado grande) [RFC 9110, sección 15.5.14]

414 URI Too Long (URI demasiado largo) [RFC 9110, sección 15.5.15]

415 Unsupported Media Type (Tipo de medios no compatible) [RFC 9110, sección 15.5.16]
[RFC 7694, sección 3]

416 Range Not Satisfiable (Rango no permitido) [RFC 9110, sección 15.5.17]

417 Expectation Failed (Expectativa fallida) [RFC 9110, sección 15.5.18]

418-420 Unassigned (No asignado)

421 Misdirected Request (Petición mal dirigida) [RFC 9110, sección 15.5.20]

422 Unprocessable Entity (Entidad no procesable) [RFC 9110, sección 15.5.21]
[RFC 4918]

423 Locked (Bloqueado) [RFC 4918]

424 Failed Dependency (Dependencia fallida) [RFC 4918]

425 Unassigned (No asignado)

426 Upgrade Required (Actualización requerida) [RFC 9110, sección 15.5.22]

427 Unassigned (No asignado)

428 Precondition Required (Condición previa requerida) [RFC 6585]

429 Too Many Requests (Demasiadas peticiones) [RFC 6585]

430 Unassigned (No asignado)

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.v.3

es / 03-90-01 Fecha: diciembre de 2025

431 Request Header Fields Too Large (Campos del encabezado
de petición demasiado largos) [RFC 6585]

432-450 Unassigned (No asignado)

451 Unavailable For Legal Reasons (No disponible por razones
legales) [RFC 7725]

452-499 Unassigned (No asignado)

500 Internal Server Error (Error interno del servidor) [RFC 9110, sección 15.6.1]

501 Not Implemented (No implementado) [RFC 9110, sección 15.6.2]

502 Bad Gateway (Puerta de enlace incorrecta) [RFC 9110, sección 15.6.3]

503 Service Unavailable (Servicio no disponible) [RFC 9110, sección 15.6.4]

504 Gateway Timeout (Tiempo de espera agotado para la puerta de
enlace) [RFC 9110, sección 15.6.5]

505 HTTP Version Not Supported (Versión HTTP no compatible) [RFC 9110, sección 15.6.6]

506 Variant Also Negotiates (Variante también negocia) [RFC 2295]

507 Insufficient Storage (Almacenamiento insuficiente) [RFC 4918]

508 Loop Detected (Bucle detectado) [RFC 5842]

509 Unassigned (No asignado)

510 Not Extended (Extensiones requeridas) [RFC 2774]

511 Network Authentication Required (Autenticación de la red
requerida) [RFC 6585]

512-599 Unassigned (No asignado)

[Sigue el Anexo VI]

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.vi.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO VI

TÉRMINOS DE REPRESENTACIÓN

Versión 1.1

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su décima sesión, el 25 de noviembre de 2022

Término Definición Tipo de datos

Amount (cuantía) Valor monetario. Número

Category (categoría)
División o subconjunto específicamente definido en un sistema de
clasificación en el que todos los elementos comparten el mismo
concepto de taxonomía.

Cadena

Code (código)
Combinación de uno o más números, letras o caracteres especiales,
que se sustituye por un significado concreto. Representa valores finitos
y predeterminados o formato libre.

Cadena

Date (fecha) Punto concreto en el tiempo expresado mediante el año, el mes y el día. Cadena

Directory
(directorio)

Siempre precedido por PATH. Cadena

Document
(documento)

Un objeto grande de caracteres (CLOB) es un tipo de datos específico
de casi todas las bases de datos. Básicamente, un CLOB es un puntero
a un texto almacenado fuera del cuadro en un bloque dedicado. Se
utiliza para documentos XML. Está compuesto por información textual
del Registro Internacional de Marcas que se está intercambiando. Las
etiquetas XML identifican los elementos de datos relacionados con
dicha información. El equipo de desarrollo del apoyo a la tecnología y la
innovación de Madrid puede definir el atributo XML_DOC como un
CLOB, un puntero a los datos etiquetados almacenados fuera del
cuadro en un bloque dedicado.

Cadena

Identifier
(identificador)

Combinación de uno o más números enteros, letras o caracteres
especiales que identifican de manera inequívoca una aplicación
concreta de un objeto comercial, pero que puede no tener un significado
fácilmente definible.

Cadena

Indicator
(indicador)

Señal de presencia, ausencia o requisito de algo. Los valores
recomendados son “Y”, “N” y “?”, si fuera necesario. Booleano

Measure
(medida)

Valor numérico que se determina midiendo un objeto y que se expresa
mediante la unidad de medida especificada. MeasureType se utiliza
para representar un tipo de magnitud física como la temperatura, la
longitud, la velocidad, la anchura, el peso, el volumen o la latitud de un
objeto. Más concretamente, MeasureType debe usarse para medir las
propiedades intrínsecas o físicas de un objeto percibido como un
conjunto.

Número

Name
(nombre)

Designación de un objeto expresada mediante una palabra o una frase. Cadena

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.vi.2

es / 03-90-01 Fecha: diciembre de 2025

Término Definición Tipo de datos

Number
(número)

Cadena de numerales o caracteres alfanuméricos que expresan una
etiqueta, un valor, una cantidad o una identificación. Número, cadena

Percent (por ciento) Número que representa una parte de un conjunto, que se dividirá por
100. Número

Quantity (cantidad)

Número contado de unidades no monetarias que puede contener
fracciones. Quantity se utiliza para representar un número de cosas
contadas. Quantity debe utilizarse para contar o cuantificar las
propiedades simples de un objeto percibido como un compuesto, una
colección o un contenedor. Quantity debería siempre expresar un
número de cosas contadas, y la propiedad será del tipo total, enviada,
cargada o almacenada. QuantityType debería utilizarse para
componentes que requieren información sobre la unidad; y
xsd:nonNegativeInteger debería utilizarse para componentes
contables que no requieren información sobre la unidad.

Número

Rate (índice) Cantidad o cuantía medida con respecto a otra cantidad o cuantía. Número

Text (texto) Cadena de caracteres sin formato, por lo general en forma de palabras
(incluye abreviaturas y comentarios). Cadena

Time (tiempo) Designación de un punto cronológico concreto en un período. Fecha

DateTime (fecha y
hora) Fecha y hora en que se produce un evento. Fecha

URI Identificador uniforme de recursos que identifica la ubicación del
archivo. Cadena

[Sigue el Anexo VII]

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.vii.1

es / 03-90-01 Fecha: diciembre de 2025

ANEXO VII

PUBLICACIÓN DE LA GESTIÓN DEL CICLO DE VIDA DE LAS API

Versión 1.1

Revisión aprobada por el Comité de Normas Técnicas de la OMPI (CWS)
en su décima sesión, el 25 de noviembre de 2022

1. En el presente Anexo se describe brevemente la gestión del ciclo de vida de las API y se indica la información más
importante que las oficinas de PI deberían publicar en un documento normativo destinado a que los consumidores de API
conozcan la mejor manera de utilizar la API.

2. La gestión del ciclo de vida de una API es un aspecto crítico de una estrategia de API, ya que establece el marco en
que se desarrolla el ciclo de vida de la API desde su creación hasta su retirada. Resulta útil a nivel interno para los
desarrolladores y equipos de operaciones y a nivel externo para los consumidores de API. Permite a los equipos de
desarrollo interno crear una estructura y establecer expectativas para el desarrollo de la API, y a los equipos de
operaciones conocer los requisitos de soporte. En cuanto a los consumidores de API, tanto a nivel interno como externo,
les proporciona un contrato informal de expectativas para cuando utilicen una API determinada. Estos aspectos quedarán
más claros cuando se describa cada una de las etapas del ciclo de vida.

3. Los ciclos de vida de API publicados consisten en procesos sencillos de 4 fases o en procesos más complejos de
10 o más fases. No obstante, en general, los ciclos de vida con más fases se consideran versiones detalladas de los ciclos
de vida con menos fases. En el presente documento se aborda un proceso básico en el que la API pasa por 4 estados,
suficiente para describir su ciclo de vida: creada -> publicada -> obsoleta -> retirada. Cualquier documento publicado sobre
el ciclo de vida de una API debe incluir al menos una descripción de estas cuatro fases que son gestionadas por una oficina
de PI.

Creada

Retirada Publicada

Obsoleta

Ciclo de
vida de
una API

MANUAL DE INFORMACIÓN Y DOCUMENTACIÓN EN
MATERIA DE PROPIEDAD INTELECTUAL

Ref.: Normas – ST.90 página: 3.90.vii.2

es / 03-90-01 Fecha: diciembre de 2025

CREADA

4. La creación de una API se centra en su diseño, implementación y documentación. Lo más importante durante la
fase de creación es tener en cuenta la finalidad de la API y la estructura general necesaria para que la API pueda funcionar
lo mejor posible en el futuro. Lo ideal sería que la API se ajustara a una serie de normas internas y externas, como las
recomendaciones formuladas en la presente norma. Si se va a monetizar la API, la estrategia de monetización debería
definirse en esta fase.

PUBLICADA

5. Después de crear una API es necesario publicarla. Debería utilizarse una estrategia estándar de desarrollo de
versiones y se debería proporcionar documentación que incluya la especificación de la API y peticiones y respuestas de
ejemplo (véanse [RSG-64] y [RSG-65]). Una vez publicada, la API puede ser consumida por las aplicaciones. Conviene
señalar que durante la fase de publicación se pueden realizar correcciones y mejoras.

OBSOLETA

6. En algún momento la API dejará de utilizarse, bien porque sea reemplazada por una versión más reciente o porque
deje de ser de interés debido a algún factor externo o interno. Se deberá informar a los consumidores de la API y realizar
los preparativos necesarios para retirar la API del catálogo. En esta fase se suelen corregir solo los errores más
importantes de la API.

RETIRADA

7. En esta fase se desactiva la API, lo que debería incluir la imposibilidad de acceder a ella y la eliminación de la API
de la plataforma correspondiente. Se debería considerar la posibilidad de prestar soporte extendido o si hay algún caso en
que la retirada se pueda retrasar.

8. Las dos últimas fases, relativas a la obsolescencia y la retirada, son las principales que hay que documentar en la
gestión del ciclo de vida. Es fundamental que los consumidores de las API conozcan las previsiones establecidas para la
API cuando empiezan a utilizarla con el fin de evitar decepciones o problemas cuando se intente eliminar una API del
catálogo. Esto debería incluir, por ejemplo, la gestión de las versiones mayores y menores y los plazos de notificación de
los cambios. En un nivel más alto, suele haber dos enfoques para declarar como obsoleta o retirar una API: o bien se
mantienen algunas versiones previamente establecidas, o bien se conservan las versiones antiguas durante un período de
tiempo determinado. También puede utilizarse una combinación de ambos enfoques, pero en el documento publicado
sobre el ciclo de vida debe indicarse claramente el número de versiones antiguas que se van a admitir o el período de
tiempo que se mantendrán las versiones antiguas.

[Fin del Anexo VII y de la Norma]

	NORMA ST. 90
	NORMA ST.90
	INTRODUCCIÓN
	DEFINICIONES Y TERMINOLOGÍA
	NOTACIONES
	Notaciones generales
	Identificadores de normas

	GRADO DE APLICACIÓN
	PRINCIPIOS DE DISEÑO DE UNA API PARA SERVICIOS WEB
	API WEB RESTFUL
	Componentes de los URI
	Códigos de estado
	Principio de selección cuidadosa
	Modelo de recursos
	Compatibilidad con múltiples formatos
	Métodos HTTP
	Patrones de consulta de datos
	Opciones de paginación
	Ordenación
	Expansión
	Proyección
	Número de elementos
	Expresiones de búsqueda complejas

	Control de errores
	Carga útil de error
	ID de correlación

	Contrato de servicio
	Tiempo de espera
	Control del estado
	Versionado por respuesta
	Almacenamiento en caché
	Transferencia gestionada de archivos

	Gestión de preferencias
	Traducción
	Operaciones de larga duración
	Modelo de seguridad
	Normas generales
	Directrices para una gestión de las API segura y resistente a las amenazas
	Cifrado, integridad y no repudio
	Autenticación y autorización
	Disponibilidad y protección frente a amenazas
	Peticiones entre dominios

	Modelo de madurez de la API

	API WEB SOAP
	Normas generales
	Esquemas
	Nombres y versiones
	Diseño del contrato de servicio web
	Adhesión de políticas a las definiciones WSDL
	SOAP - Seguridad de servicios web

	FORMATOS DE TIPOS DE DATOS
	CONFORMIDAD
	MATERIAL DE REFERENCIA
	Normas de la OMPI
	Normas y convenciones
	API REST de las Oficinas de PI
	API REST de empresas y directrices de diseño
	Otros

	ANEXO I
	ANEXO II
	ANEXO III
	Primer modelo de ejemplo: DocList
	Segundo modelo de ejemplo: Situación jurídica de las patentes

	Apéndice A
	Apéndice B
	ANEXO IV
	ANEXO V
	ANEXO VI
	ANEXO VII
	Creada
	Publicada
	Obsoleta
	Retirada

