Parameters

input file is processed. Buffers are specified in a comma-delimited string

Attribute Description Required
source the source XML file to load. Can take the form of a wildcarded pattern eg. **/*.xml. Note that o
this capability will be deprecated in favour of <fileset> usage
the source buffer containing XML from a previous <xmltask> invocation. The buffer must
sourcebuffer contain a single root node (i.e be well-formed). If the buffer is empty, then this has the effect of no
starting with a blank document.
dest the output XML file to write to no
destbuffer the output buffer to write to no
todir the output directory to write to no
report when set to true, will result in diagnostic output. no
public sets the PUBLIC identifier in the output XML DOCTYPE declaration. no
expandEntityReferences |when set to true, will enable entity reference expansion. Defaults to true no
system sets the SYSTEM identifier in the output XML DOCTYPE declaration. no
preservetype when set to true sets the PUBLIC and SYSTEM identifiers to those of the original document no
o when set to true will stop the xmltask task (and hence the build process) if any subtask fails to
failWithoutMatch . . no
match nodes using the given XPath path
indent when set to true enables indented formatting of the resultant document. This defaults to true no
encoding determines the character encoding value for the output document no
outputter determines the output mechanism to be used. See formatting for more info. no
omitHeader when set to true forces omission of the <?xml...?> header. Note that the XML spec specifies the o
header SHOULD be included, but this is not mandated for XML v1.0
standalone when set to true/false sets the standalone attribute of the header no
Clears buffers after population by previous xmltask invocations. Buffers are cleared after every
clearBuffers no

e.g.

<xmltask source="input.xml" dest="output.xml">

reads from input.xml and writes to output.xml

<xmltask todir="output">

<fileset dir=".">

<includes name="*.

xml" />

reads from the XML files in the current dir and writes to the same filenames in the output dir.

<xmltask sourcebuffer="servlet" output="servlet.xml">

reads from the previously populated buffer servlet and writes to output.xml

<xmltask source="input.xml" destbuffer="output'">

reads from a file input.xml and writes to the buffer called output.

Nested elements allow replacements to take place, and are applied in the order that they're specified in. Each subsection may match zero
or more nodes. Standard XPath paths are used here. If you're not familiar with these, the examples below will provide some hints.

See here for more info.

o The <cut> section allows an XML section to be cut and stored in a buffer or a property. Multiple XML nodes or elements can be
cut to a buffer or property by using the append attribute

Parameters

Attribute Description Required
path the XPath reference of the element(s) to cut yes
buffer the buffer to store the cut XML no
property the property to store the cut XML no

http://www.oopsconsultancy.com/software/xmltask/#buffers
http://www.oopsconsultancy.com/software/xmltask/#formatting
http://www.oopsconsultancy.com/software/xmltask/#tutorials
http://www.oopsconsultancy.com/software/xmltask/#buffers

append when set to true, appends to the given buffer or property. You can only append when no
creating a new property since Ant properties are immutable (i.e. when an XPath resolves to
multiple text nodes)
attrvalue Cutting an attribute will result in the whole attribute plus value being cut. When attrvValueis o
set to true then only the attribute's value is cut. This is implicit for cutting to properties
trim trims leading/trailing spaces when writing to properties no
propertySeparator |defines the separating string when appending properties no
if only performed if the given property is set no
unless performed unless the given property is set no
e.g.

<cut path="web/servlet/context/root[Rid='2']/text ()" buffer="namedBuffer"/>
<cut path="web/servlet/context/root[@id='2"']/text ()" property="propertyl"/>

o The <copy> section allows an XML section to be copied and stored in a buffer or a property. Multiple XML nodes or elements can
be copied to a buffer or property by using the append attribute

Parameters

Attribute Description Required
path the XPath reference of the element(s) to copy yes
buffer the buffer to store the copied XML no
property the property to store the copied XML no

when set to true, appends to the given buffer or property. You can only append when

append creating a new property since Ant properties are immutable (i.e. when an XPath resolves to no
multiple text nodes)

Copying an attribute will result in the whole attribute plus value being cut.
attrValue When attrValueis set to true then only the attribute's value is copied. This is no
now implicit for copying to properties

propertySeparator |defines the separating string when appending properties no
trim trims leading/trailing spaces when writing to properties no
if only performed if the given property is set no
unless performed unless the given property is set no
e.g.

<copy path="web/servlet/context/root[@id='2"']/text ()" buffer="namedBuffer"/>
<copy path="web/servlet/context/root[@id='2"']/text ()" property="propertyl"/>

o The <paste> section allows the contents of a buffer or a property to be pasted into an XML document. This is a synonym for the
insert section (see below)

o The <insert> section allows you to specify an XML node and the XML to insert below or alongside it

Parameters

Attribute Description Required
path the XPath reference of the element(s) to insert into yes
buffer the buffer to paste no
file the file to paste no
xml the literal XML to paste no
expandProperties |indicates whether properties in body text XML are expanded or not. Defaults to true no

o where the XML is to be inserted in relation to the XML highlighted by path. The allowed

position positions are before, after, or under. The default position is under. ne
if only performed if the given property is set no
unless performed unless the given property is set no

e.g.

http://www.oopsconsultancy.com/software/xmltask/#buffers
http://www.oopsconsultancy.com/software/xmltask/#buffers

<insert path="/web/servlet/context/root[Rattr='val']" xml=""/>

<insert path="/web/servlet/context/root[Rattr='val']" file="insert.xml"/>

<insert path="/web/servlet/context/root[Rattr='val']" buffer="namedBuffer" position="before"/>
<insert path="/web/servlet/context/root[Rattr='val']" xml="${propertyl}" position="before"/>

The XML to insert can be a document fragment - that is to say it doesn't require a root node. Examples of insertable XML include:
<welcome-file-list/>

(a well formed document)

<servlet-mapping id="1"/><servlet-mapping id="2"/>

(a well-formed document without a root node)

The XML to insert can be specified as body text within the <insert> task eg.

<insert path="web/servlet/context/root[Q@id='2"']/text()">
<! [CDATA[
<node/>
11>
</insert>

Note that the XML has to be specified within a CDATA section. Ant properties are expanded within these sections,
unless expandProperties is set to false

You can create a new document by not specifying a source file, and making the first instruction for <xmltask> an <insert> or
<paste> with the appropriate root node (and any subnodes).

o The <replace> section allows you to specify an XML node and what to replace it with

Parameters

Attribute Description Required
the XPath reference of the element(s) to replace. If this represents an attribute, then the

path value of the attribute will be changed. In this scenario you can only specify text as yes
replacement

withText the text to insert in place of the nominated nodes no

withXml the literal XML to insert in place of the nominated nodes no

withFile the file containing XML to insert in place of the nominated nodes no

withBuffer the buffer containing XML to insert in place of the nominated nodes no

expandProperties |indicates whether properties in body text XML are expanded or not. Defaults to true no

if only performed if the given property is set no

unless performed unless the given property is set no

e.g.

<replace path="web/servlet/context/root[@id='2"']/text ()" withText="2"/>

<replace path="web/servlet/context/root[Rid='2']/@id" withText="3"/>

<replace path="web/servlet/context/root[Qid='2"']/text ()" withXml="<ids>"/>
<replace path="web/servlet/context/root[Qid='2']/" withFile="substitution.xml"/>
<replace path="web/servlet/context/root[@id='2"']/" withBuffer="namedBuffer"/>

(note that to include literal XML using withXml, angle brackets have to be replaced with entities). The XML can be a well-formed
document without any root node. The XML to insert can be specified as body text within the <replace> task eg.

<replace path="web/servlet/context/root[Rid='2"']/text()">
<! [CDATA[
<node/>
11>
</replace>

Note that the XML has to be specified within a CDATA section. Ant properties are expanded within these sections,
unless expandProperties is set to false

o The <attr> section allows you to specify an XML node and how to add, change or remove its attributes

Parameters

Attribute |Description Required
path the XPath reference of the element(s) to be changed yes
attr the name of the attribute to be added/changed or removed yes
value the value to set the attribute to no
remove if set to true, indicates that the nominated attribute should be removed no
if only performed if the given property is set no
unless performed unless the given property is set no
e.g.

<attr path="web/servlet/context[@id='4']/" attr="id" value="test"/>

<attr path="web/servlet/context[@id='4']/" attr="id" remove="true"/>

Note that in the first example, if the attribute id doesn't exist, it will be added.

o The <remove> section allows you to specify an XML section to remove

Parameters

Attribute Description Required
path the XPath reference of the element(s) to be removed yes
if only performed if the given property is set no
unless performed unless the given property is set no

e.g.

<remove path="web/servlet/context[Q@id='redundant']"/>

The <regexp> section allows you to specify XML text to change via regular expressions.

Parameters

Attribute Description Required
path the XPath reference of the element(s) to be changed or copied yes
pattern The regular expression to apply to the text node or attribute value yes
replace The text to replace the matched expression with no
property The property to copy the matched expression into. A capturing_group must be used to specify no

the text to capture
buffer The buffer to copy the matched expression into. A capturing_group must be used to specify the o
text to capture

casesensitive Sets case sensitivity of the regular expression. Defaults to true no
if only performed if the given property is set no
unless performed unless the given property is set no

The <regexp> task uses the standard Java regular expression mechanism. Replacements can make use of capturing_groups.
When copying to a buffer or a property, a capturing group must be specified to determine the text to be copied.

e.g.

<regexp path="/web-app/servlet/servlet-name/text ()"
<regexp path="/web-app/servlet/servlet-name/text ()"

pattern="Test" replace="Prod"/>
pattern="Servlet-([a-z])-([0-9]*)"

replace="Servlet-$2-$1"/>

<regexp path="/web-app/servlet/servlet-name/text ()"
<regexp path="/web-app/servlet/servlet-name/text ()"

pattern=" (.*)Test" property="servlet.name"/>
pattern="(.*)Test" buffer="servlet.name"/>

Note the use of the capturing groups to reverse components of the servlet's name, or to determine the servlet name substring to copy to a buffer or

property.

The <rename> section allows you to specify an XML element or attribute to rename

Parameters

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#cg
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#cg
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#cg

Attribute Description Required
path the XPath reference of the element(s) to be renamed yes
to the new node name yes
if only performed if the given property is set no
unless performed unless the given property is set no
e.g.

<rename path="a/b/c[@id='1']" to="d"/>
<rename path="a/b/Qc" to="d"/>

o The <call> section allows you to perform actions or call Ant targets in the same build.xml file for nodes identified by an XPath.

Parameters

Attribute |Description Required
path the XPath reference of the element(s) to be identified yes
target the Ant target to call for each identified node no
buffer the buffer to use to store each identified node (for the duration of the target call) no
inheritAll boolean indicating if the target being called inherits all properties. Defaults to true no
inheritRefs |boolean indicating if the target being called inherits all references. Defaults to false no

if only performed if the given property is set no
unless performed unless the given property is set no

e.g. in the below example, the Ant target CNode is called for each occurrence of the C node in the given XPath expression. For
each call to CNode the buffer abce is populated with the node identified (plus any subnodes).

<call path="a/b/c" target="CNode" buffer="abc"/>

In the below example, Ant actions are embedded within the <call> action (Ant 1.6 and above only):

<call path="a/b/c">
<actions>
<echo>Found a node under a/b/c</echo>
</actions>
</call>

This mechanism can be used to drive Ant builds from existing XML resources such as web.xml or struts.xml, or to provide
a meta-build facility for Ant, by driving the build.xml from a higher level proprietary XML config.

Properties can be set for the target being called using XPath syntax or simply as existing properties or static strings. eg.

<call path="a/b/c" target="CNode" buffer="abc">
<param name="val" path="text()"/>
<param name="id" path="@id" default="n/a"/>
<param name="os" value="${os.name}"/>

</call>

will call the Ant target CNode as above, but for each invocation, the property val is set to the value of the text node under C, and

the property id is set to the corresponding id attribute. If the id attribute is missing then "n/a" will be substituted. os is set to the
OS.

The same can be done for embedded actions:

<call path="a/b/c">
<param name="val" path="text()"/>
<param name="id" path="@id" default="n/a"/>
<param name="os" value="${os.name}"/>
<actions>
<echo>val = @{val}</echo>
<echo>id = @{id}</echo>

</actions>
</call>

Note how the parameters are dereferenced in this example (using @{...}). Note also that for embedded actions each
property musthave a value assigned to it. If in doubt use the default attribute in the <param> instruction.

o The <print> section allows you to dump out to standard output the XML matching a given XPath expression, or the contents of a

buffer. This is a considerable help in performing debugging of scripts

Parameters

Attribute |Description Required
path the XPath reference of the element(s) to be identified no
buffer the buffer to print out no
comment a corresponding comment to print out no

e.g..

<print path="a/b/c" comment="Nodes matching a/b/c"/>
<print buffer="bufferl" comment="Contents of buffer 1"/>

This instruction has no effect on the documents being scanned or generated.
o xzmltask now supports the Ant 1.5 <xmlcatalog> element, which allows you to specify local copies of DTDs. This

allows you to specify a DOCTYPE referred to in the original document, and the local DTD to use instead (useful if
you're behind firewalls and the like).

e.g.

<xmlcatalog id="dtds">

<dtd publicId="-//00PS Consultancy//DTD Test 1.0//EN" location="./local.dtd"/>
</xmlcatalog>

<xmltask source="18.xml" dest="18-out.xml" report="true">
<xmlcatalog refid="dtds"/>
<!-- set a text element to a value -->

</xmltask>

references a local copy of a DTD.

Alternatively, you can use the legacy <entity> element within <xmltask>, as below:

<entity remote="-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" local="web.dtd"/>
<entity remote="-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" local=""/>

The first version above specifies a local version of the DTD. The second indicates that the remote entity will be ignored
completely. Note that the remote attribute can take either the PUBLIC specification or the SYSTEM specification.

o The uncomment instruction allows you to uncomment sections of XML. This means you can maintain different XML

fragments within one document and enable a subset. For instance you can maintain different configs and only enable

one at deployment

Parameters
Attribute |Description Required
path the path of the comment to uncomment. This must resolve to a comment within the input ves
document
if only performed if the given property is set no
unless performed unless the given property is set no
e.g.

<xmltask source="server.xml" dest="server.xml" report="true'">
<!-- enables a servlet configuration -->

http://jakarta.apache.org/ant/manual/CoreTypes/xmlcatalog.html

<uncomment path="/server/service[@name='Tomcat-Standalone']/comment()"/>

</xmltask>

. The sections above can be chained together to provide successive modifications to an XML file eg.

<target name="main">
<xmltask source="input.xml"
dest="output.xml
public="//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
system="http://java.sun.com/j2ee/dtds/web-app 2 2.dtd"
report="true">
<replace path="web/servlet/context/config[Qid='1"']/text ()" withFile="configl.xml"/>
<replace path="web/servlet/context/config[QRid='2"']/text ()" withFile="config2.xml"/>
<insert path="/web/security/" file="uat.security.xml"/>
<remove path="web/servlet/context/config[@id='4"']"/>
</xmltask>
</target>

Here the report attribute is enabled to view the XML transformations as they occur. The input is loaded from input.xml and the output
will go to output.xml. The files configl/2.xml replace the text below the appropriate <config> nodes, the file security.xml is
inserted and then the config id #4 is removed. output.xml will be output with the appropriate DOCTYPE setting for a Servlet
2.2 web.xml(using the public/system settings - note that if input.xml has the public and system ids set
already, preserveType="true" could be used here).
Top
Buffers

Buffers are used to store nodes found by <cut> and <copy> operations, and those nodes can be inserted into a document using <insert> /
<paste>.

Buffers exist for the duration of the Ant process and consequently can be used across multiple invocations of <xmltask>. eg. the following is
possible:

<target name="cut'">
<xmltask source="input.xml" dest="1.xml >
<cut path="web/servlet/context/config[QRid='4']" buffer="storedXml" />
</xmltask>
</target>

<target name="paste" depends="cut">
<xmltask source="input.xml" dest="output.xml >
<paste path="web/servlet/context/config[@id='5"'] buffer="storedXml" />
</xmltask>
</target>

so the buffer storedXml is maintained across multiple targets.
Buffers are simply defined by names. eg. valid buffers would be serviet, buffer100 etc.

A buffer can record multiple nodes (either resulting from multiple matches or multiple <cut> / <copy> operations). This operation is enabled
through use of the append attribute. e.g.

<cut path="web/servlet/context/config" buffer="storedXml" append="true" />
A buffer can store all types of XML nodes e.g. text / elements / attributes. Note that when recording an attribute node, both the name of the
attribute and the value will be recorded. To store the value alone of an attribute, the attrvalue attribute can be used e.g.

<copy path="web/servlet/@id" buffer="id" attrValue="true" />

This will store the value of the id attribute. The value can be used as a text node in a subsequent <insert> / <paste>.

Buffers can be persisted to files. This permits buffers to be used across Ant invocations, and uses of <antcall>. To persist a buffer to a file,
simply name it using a file URL. e.g.

http://www.oopsconsultancy.com/software/xmltask/#top
http://www.oopsconsultancy.com/software/xmltask/#usage.cut
http://www.oopsconsultancy.com/software/xmltask/#usage.copy
http://www.oopsconsultancy.com/software/xmltask/#usage.insert
http://www.oopsconsultancy.com/software/xmltask/#usage.insert
http://www.oopsconsultancy.com/software/xmltask/#usage.paste
http://ant.apache.org/manual/CoreTasks/antcall.html

<cut path="/a/b" buffer="file://build/buffers/1"/>

and the operation will write the cut XML to a file build/buffers/1. This file will persist after Ant exits, so care should be taken to remove this
if required. The file will be created automatically, but any directories required must exist prior to the buffer being used.

Top

Formatting
The formatting of the output document is controlled by the attribute 'outputter'. There are three options:

<xmltask outputter="default"...
outputs the document as is. That is to say, all whitespace etc. is preserved. This is the default option. Note that attribute ordering may change
and elements containing attributes may be split over several lines etc. ie. the document remains the same semantically.

<xmltask outputter="simple"...
outputs the document with a degree of formatting. Elements are indented and given new lines wherever possible to make a more readable
document. This is not suitable for all applications since some XML consumers will be whitespace sensitive.

Spacing can be adjusted by using <xmltask outputter="simple:{indent}...>". e.g. <xmltask outputter="simple:1"... resultsin:

<root>
<branch/>
</root>

The indent level can be increased: <xmltask outputter="simple:4"... results in:

<root>
<branch/>
</root>

<xmltask outputter="{classname}"...
outputs the document using the nominated class as the outputting mechanism. This allows you to control the output of the document to your
own tastes. The specified class must:

1. have a default constructor (i.e. no arguments)

2. implement the com.oopsconsultancy.xmltask.output.Outputter interface.

The custom class will be loaded and instantiated, then passed to a javax.xml.transform.sax.SAXResult object. Hence the outputter object will
receive SAX events for each node in the resultant XML document. Note:

1. com.oopsconsultancy.xmltask.output.Outputter extends org.xml.sax.ContentHandler, SO the
appropriate SAX methods need to be implemented.

2. The standard SAX callbacks will not include callbacks for comments, CDATA sections etc. If you want to receive these

events, then you also need to implement the org.xml.sax.ext.LexicalHandler interface as well.

3. For each callback, you should generate your results and write them to the writer object passed in via setWriter ()

A simple introduction is to look at the com.ocopsconsultancy.xmltask.output.FormattedDataWriter source code (in the source tarball).

Top

Examples
Some examples of common usage:

® Extracting the title from an XHTML file and storing it in a buffer:

<copy path="/xhtml/head/title/text ()" buffer="title"/>

http://www.oopsconsultancy.com/software/xmltask/#top
http://www.oopsconsultancy.com/software/xmltask/#top

® Extracting the title from an XHTML file and storing it in a property:

<copy path="/xhtml/head/title/text ()" property="title"/>

® Inserting a servlet definition into a web.xml. Note how this occurs only if the property insert.reqd is set:

<insert if="insert.reqd" path="/web-xml/servlet[last()]" position="after" file="newservlet.xml"/>

® Inserting a servlet definition into a web.xml (another way - note properties usage):

<insert path="/web-xml/servlet[last()]" position="after">
<! [CDATA[
<servlet>"
<servlet-name>
${project.name}
</servlet-name>
</servlet>

11>
</insert>

® Replacing text occurences within particular div tags:

<replace path="//div[@id='changeMe']/text ()" withText="new text"/>

® Changing an attribute (method number 1):

<attr path="//div[Q@id='1']" attr="id" value="2"/>

® Changing an attribute (method number 2):

<replace path="//div[@id='1']/Q@id" withText="2"/>

® Removing an attribute:

<remove path="//div[@id='1"']/@id"/>

® Removing an attribute (another way):

<attr path="//div[Qid='1']" attr="id" remove="true"/>

® Copying an attribute's value into a buffer:

<copy path="//div[Q@id='1']/Qid" attrValue="true" buffer="bufferName"/>

® Copying an attribute's value into a property:

<copy path="//div[@id='1"']/@id" property="propertyName"/>

® Copying multiple values into one buffer. Note the clearing of buffers a, b and ¢ prior to appending. Buffer b contains all
the div elements for each input file :

<xmltask clearBuffers="a,b,c">
<fileset dir=".">
<includes name="*.xml"/>
</fileset>
<copy path="//div" buffer="b" append="true"/>

® Removing all comments:

<remove path="//child: :comment()"/>

® Inserting the appropriate system identifiers in a transformed web . xm1:

<xmltask source="web.xml" dest="release/web.xml"
public="-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN "
system="http://java.sun.com/j2ee/dtds/web-app 2 2.dtd" >

OR

<xmltask source="web.xml" dest="release/web.xml"
preserveType="true"

if you're transforming an existing web . xml1.

® Setting the output character set to Japanese encoding:

<xmltask source="web.xml" dest="release/web.xml"
encoding="Shift-JIS" >

® Converting all unordered lists in an XHTML document to ordered lists

<rename path="//ul" to="ol"/>

® (Creating a new document with a root node <root>

<xmltask dest="release/web.xml">
<insert path="/">
<! [CDATA[
<root/>
11>
</insert>

® Counting nodes and recording the result in a property

<xmltask source="multiple.xml">
<copy path="count(/servlet)" property="count"/>

e Identifying elements with namespaces. This example copies the node element which is tied to a namespace via
an xmlnsdirective. See this XML.com article for namespace-related issues.

<xmltask source="input.xml">
<copy path="//*[local-name()='node']" property="count"/>

e Call the deploy task for each servlet entry in a web.xml. For each invocation the servletDef buffer contains the complete

servlet specification from the deployment file, and the property id contains the servlet id (if there is no id attribute then NO
IDwill be substituted). The servletDef buffer can be used in suceeding xmltask invocations.

http://www.xml.com/pub/a/2004/02/25/qanda.html

Top

<xmltask source="web.xml">
<call path="web/servlet" target="deploy" buffer="servletDef"/>
<param name="id" path="@id" default="NO ID"/>
</call>
</xmltask>

Performs actions for each servlet entry in a web.xml. For each invocation the embedded actions are performed (Ant 1.6 and
above only).

<xmltask source="web.xml">
<call path="web/servlet"/>
<param name="id" path="@id" default="NO ID"/>
<actions>
<echo>Found a servlet @{id}</echo>
<!-- perform deployment actions -->

</actions>
</call>
</xmltask>

Uncomment and thus enable a set of users in a tomcat-users.xml file. The users are set up in the first 2 comments

<xmltask source="tomcat-users.xml">
<uncomment path="tomcat-users/comment () [1]"/>
<uncomment path="tomcat-users/comment () [2]"/>
</xmltask>

Cutting a section of XML to a buffer, and displaying the buffer to confirm to the developer that a suitable XML fragment has
been identified/stored

<xmltask source="input.xml">
<cut path="web/servlet[@id='1l']" buffer="servlet"/>
<print buffer="servlet" comment="Copied to 'servlet' buffer"/>

Cutting a section of XML to a persisted buffer (the file buffers/servlet) for later use

<xmltask source="input.xml">
<cut path="web/servlet[Qid='1']" buffer="file://build/buffers/servlet"/>

Known Issues

The Java 1.4.2 release as of June 2003 has tightened up XPath parsing and what is regarded as acceptable XPath syntax. In
particular, the following usage of trailing path separators is now regarded as incorrect:

/root/branch/

and should be replaced with

/root/branch

Some of the xm1task examples and documentation have used the incorrect syntax. This is now rectified.

http://www.oopsconsultancy.com/software/xmltask/#top

