F
SECTION F — MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
 F01 - 
F42

Note(s)

Guide to the use of this subsection (classes F01-F04)

The following notes are meant to assist in the use of this part of the classification scheme.

  1. In this subsection, subclasses or groups designating "engines" or "pumps" cover methods of operating the same, unless otherwise specifically provided for.
  2. In this subsection, the following terms or expressions are used with the meanings indicated:
    • "engine" means a device for continuously converting fluid energy into mechanical power. Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. "Engine" also includes the fluid-motive portion of a meter unless such portion is particularly adapted for use in a meter;
    • "pump" means a device for continuously raising, forcing, compressing, or exhausting fluid by mechanical or other means. Thus, this term includes fans or blowers;
    • "machine" means a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump;
    • "positive displacement" means the way the energy of a working fluid is transformed into mechanical energy, in which variations of volume created by the working fluid in a working chamber produce equivalent displacements of the mechanical member transmitting the energy, the dynamic effect of the fluid being of minor importance, and vice versa;
    • "non-positive displacement" means the way the energy of a working fluid is transformed into mechanical energy, by transformation of the energy of the working fluid into kinetic energy, and vice versa;
    • "oscillating-piston machine" means a positive-displacement machine in which a fluid-engaging work-transmitting member oscillates. This definition applies also to engines and pumps;
    • "rotary-piston machine" means a positive-displacement machine in which a fluid-engaging work-transmitting member rotates about a fixed axis or about an axis moving along a circular or similar orbit. This definition applies also to engines and pumps;
    • "rotary piston" means the work-transmitting member of a rotary-piston machine and may be of any suitable form, e.g., like a toothed gear;
    • "cooperating members" means the "oscillating piston" or "rotary piston" and another member, e.g., the working-chamber wall, which assists in the driving or pumping action;
    • "movement of the co-operating members" is to be interpreted as relative, so that one of the "co-operating members" may be stationary, even though reference may be made to its rotational axis, or both may move;
    • "teeth or tooth equivalents" include lobes, projections or abutments;
    • "internal-axis type" means that the rotational axes of the inner and outer co-operating members remain at all times within the outer member, e.g., in a similar manner to that of a pinion meshing with the internal teeth of a ring gear;
    • "free piston" means a piston of which the length of stroke is not defined by any member driven thereby;
    • "cylinders" means positive-displacement working chambers in general. Thus, this term is not restricted to cylinders of circular cross-section;
    • "main shaft" means the shaft which converts reciprocating piston motion into rotary motion or vice versa;
    • "plant" means an engine together with such additional apparatus as is necessary to run the engine. For example, a steam engine plant includes a steam engine and means for generating the steam;
    • "working fluid" means the driven fluid in a pump and the driving fluid in an engine. The working fluid may be in a gaseous state, i.e., compressible, or liquid. In the former case coexistence of two states is possible;
    • "steam" includes condensable vapours in general, and "special vapour" is used when steam is excluded;
    • "reaction type" as applied to non-positive-displacement machines or engines means machines or engines in which pressure/velocity transformation takes place wholly or partly in the rotor. Mmachines or engines with no, or only slight, pressure/velocity transformation in the rotor are called "impulse type".
  3. In this subsection:
  4. For use of this subsection with a good understanding, it is essential to remember, so far as subclasses F01B, F01C, F01D, F03B, and F04B, F04C, F04D, which form its skeleton, are concerned:
    • the principle which resides in their elaboration,
    • the classifying characteristics which they call for, and
    • their complementarity.
      1. Principle

        This concerns essentially the subclasses listed above. Other subclasses, notably those of class F02, which cover better-defined matter, are not considered here.

        Each subclass covers fundamentally a genus of apparatus (engine or pump) and by extension covers equally "machines" of the same kind. Two different subjects, one having a more general character than the other, are thus covered by the same subclass.

        Subclasses F01B, F03B, F04B, beyond the two subjects which they cover, have further a character of generality in relation to other subclasses concerning the different species of apparatus in the genus concerned.

        This generality applies as well for the two subjects dealt with, without these always being in relation to the same subclasses.

        Thus, subclass F03B, in its part dealing with "machines", should be considered as being the general class relating to subclasses F04B, F04C, and in its part dealing with "engines" as being general in relation to subclass F03C.

      2. Characteristics

        The principal classifying characteristic of the subclass is that of genera of apparatus, of which there are three possible:

        Machines; engines; pumps.

        As stated above, "machines" are always associated with one of the other two genera. These main genera are subdivided according to the general principles of operation of the apparatus:

        Positive displacement; non-positive displacement.

        The positive displacement apparatus are further subdivided according to the ways of putting into effect the principle of operation, that is, to the kind of apparatus:

        Simple reciprocating piston; rotary or oscillating piston; other kind.

        Another classifying characteristic is that of the working fluid, in respect of which three kinds of apparatus are possible, namely:

        Liquid and elastic fluid; elastic fluid; liquid.

      3. Complementarity

        This resides in association of pairs of the subclasses listed above, according to the characteristics under consideration in respect of kind of apparatus or working fluid.

        The subclasses concerned with the various principles, characteristics and complementarity are shown in the following table:

It is seen from this table that:

  
LIGHTING; HEATING
 F23
COMBUSTION APPARATUS; COMBUSTION PROCESSES
 F23

Note(s)

In this class, the following terms or expressions are used with the meanings indicated:

  • "combustion" means the direct combination of oxygen gas, e.g. in air, and a burnable substance. Any other heat-producing combination of chemical substances, e.g. hydrogen peroxide and methane, iron oxide and aluminium, is covered by section C or by subclass F24J;
  • "combustion chamber" means a chamber in which fuel is burned to establish a self-supporting fire or flame and which surrounds that fire or flame;
  • "burner" means a device by which fluent fuel is passed to a combustion space where it burns to produce a self-supporting flame;
  • "air" means a mixture of gases containing free oxygen and able to promote or support combustion.

 F23B
COMBUSTION APPARATUS USING ONLY SOLID FUEL (for lump and another kind of fuel simultaneously or alternatively F23C 1/00; combustion in fluidised beds F23C 11/02; burning of low-grade fuel F23G; grates F23H; feeding solid fuel to combustion apparatus F23K; constructional details of combustion chambers not otherwise provided for F23M; domestic apparatus F24; central heating boilers F24D; package boilers F24H)
 F23B

Note(s)

This subclass covers only the combustion of lump fuel, or of pulverulent or granulated fuel if no use is made of its fluent nature.

 F23B
Subclass index
APPARATUS
Structural features 1/00
Portable or removable 3/00
Arrangements for burning uncombusted material 5/00
Other apparatus 7/00
COMBUSTION TECHNIQUES 7/00
 F23B 1/00
Combustion apparatus using only lump fuel
 F23B 1/02
·  for indirect heating of a medium in a vessel, e.g. for boiling water (steam generation F22)
 F23B 1/04
·  ·  External furnaces, i.e. with furnace in front of the vessel
 F23B 1/06
·  ·  ·  for heating water-tube boilers, e.g. Tenbrink flue furnaces
 F23B 1/08
·  ·  Internal furnaces, i.e. with furnaces inside the vessel
 F23B 1/10
·  ·  ·  for heating locomotive boilers
 F23B 1/12
·  ·  with a plurality of combustion chambers
 F23B 1/14
·  Combined gas-producer and boiler, e.g. returning gases to flame (destructive distillation C10B)
 F23B 1/16
·  the combustion apparatus being modified according to the form of grate or other fuel support
 F23B 1/18
·  ·  using inclined grate
 F23B 1/20
·  ·  using step-type grate
 F23B 1/22
·  ·  using travelling grate
 F23B 1/24
·  ·  using rotating grate
 F23B 1/26
·  ·  using imperforate fuel supports
 F23B 1/28
·  ·  using ridge-type grate, e.g. for combustion of peat, sawdust, or pulverulent fuel
 F23B 1/30
·  characterised by the form of combustion chamber
 F23B 1/32
·  ·  rotating
 F23B 1/34
·  ·  annular
 F23B 1/36
·  ·  shaft type
 F23B 1/38
·  ·  for combustion of peat, sawdust, or pulverulent fuel on a grate or other fuel support
 F23B 3/00
Combustion apparatus which is portable or removable with respect to the boiler or other apparatus which is heated
 F23B 5/00
Combustion apparatus with arrangements for burning uncombusted material from primary combustion (wherein the primary combustion may be of pulverulent fuel F23C 9/00)
 F23B 5/02
·  in main combustion chamber
 F23B 5/04
·  in separate combustion chamber; on separate grate
 F23B 7/00
Combustion techniques; Other solid-fuel combustion apparatus