F
SECTION F — MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
  
ENGINES OR PUMPS
 F01 - 
F04

Note(s)

Guide to the use of this subsection (classes F01-F04)

The following notes are meant to assist in the use of this part of the classification scheme.

  1. In this subsection, subclasses or groups designating "engines" or "pumps" cover methods of operating the same, unless otherwise specifically provided for.
  2. In this subsection, the following terms or expressions are used with the meanings indicated:
    • "engine" means a device for continuously converting fluid energy into mechanical power. Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. "Engine" also includes the fluid-motive portion of a meter unless such portion is particularly adapted for use in a meter;
    • "pump" means a device for continuously raising, forcing, compressing, or exhausting fluid by mechanical or other means. Thus, this term includes fans or blowers;
    • "machine" means a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump;
    • "positive displacement" means the way the energy of a working fluid is transformed into mechanical energy, in which variations of volume created by the working fluid in a working chamber produce equivalent displacements of the mechanical member transmitting the energy, the dynamic effect of the fluid being of minor importance, and vice versa;
    • "non-positive displacement" means the way the energy of a working fluid is transformed into mechanical energy, by transformation of the energy of the working fluid into kinetic energy, and vice versa;
    • "oscillating-piston machine" means a positive-displacement machine in which a fluid-engaging work-transmitting member oscillates. This definition applies also to engines and pumps;
    • "rotary-piston machine" means a positive-displacement machine in which a fluid-engaging work-transmitting member rotates about a fixed axis or about an axis moving along a circular or similar orbit. This definition applies also to engines and pumps;
    • "rotary piston" means the work-transmitting member of a rotary-piston machine and may be of any suitable form, e.g., like a toothed gear;
    • "cooperating members" means the "oscillating piston" or "rotary piston" and another member, e.g., the working-chamber wall, which assists in the driving or pumping action;
    • "movement of the co-operating members" is to be interpreted as relative, so that one of the "co-operating members" may be stationary, even though reference may be made to its rotational axis, or both may move;
    • "teeth or tooth equivalents" include lobes, projections or abutments;
    • "internal-axis type" means that the rotational axes of the inner and outer co-operating members remain at all times within the outer member, e.g., in a similar manner to that of a pinion meshing with the internal teeth of a ring gear;
    • "free piston" means a piston of which the length of stroke is not defined by any member driven thereby;
    • "cylinders" means positive-displacement working chambers in general. Thus, this term is not restricted to cylinders of circular cross-section;
    • "main shaft" means the shaft which converts reciprocating piston motion into rotary motion or vice versa;
    • "plant" means an engine together with such additional apparatus as is necessary to run the engine. For example, a steam engine plant includes a steam engine and means for generating the steam;
    • "working fluid" means the driven fluid in a pump and the driving fluid in an engine. The working fluid may be in a gaseous state, i.e., compressible, or liquid. In the former case coexistence of two states is possible;
    • "steam" includes condensable vapours in general, and "special vapour" is used when steam is excluded;
    • "reaction type" as applied to non-positive-displacement machines or engines means machines or engines in which pressure/velocity transformation takes place wholly or partly in the rotor. Machines or engines with no, or only slight, pressure/velocity transformation in the rotor are called "impulse type".
  3. In this subsection:
  4. For use of this subsection with a good understanding, it is essential to remember, so far as subclasses F01B, F01C, F01D, F03B, and F04B, F04C, F04D, which form its skeleton, are concerned:
    • the principle which resides in their elaboration,
    • the classifying characteristics which they call for, and
    • their complementarity.
      1. Principle

        This concerns essentially the subclasses listed above. Other subclasses, notably those of class F02, which cover better-defined matter, are not considered here.

        Each subclass covers fundamentally a genus of apparatus (engine or pump) and by extension covers equally "machines" of the same kind. Two different subjects, one having a more general character than the other, are thus covered by the same subclass.

        Subclasses F01B, F03B, F04B, beyond the two subjects which they cover, have further a character of generality in relation to other subclasses concerning the different species of apparatus in the genus concerned.

        This generality applies as well for the two subjects dealt with, without these always being in relation to the same subclasses.

        Thus, subclass F03B, in its part dealing with "machines", should be considered as being the general class relating to subclasses F04B, F04C, and in its part dealing with "engines" as being general in relation to subclass F03C.

      2. Characteristics
        1. The principal classifying characteristic of the subclass is that of genera of apparatus, of which there are three possible:

          Machines; engines; pumps.

        2. As stated above, "machines" are always associated with one of the other two genera. These main genera are subdivided according to the general principles of operation of the apparatus:

          Positive displacement; non-positive displacement.

        3. The positive displacement apparatus are further subdivided according to the ways of putting into effect the principle of operation, that is, to the kind of apparatus:

          Simple reciprocating piston; rotary or oscillating piston; other kind.

        4. Another classifying characteristic is that of the working fluid, in respect of which three kinds of apparatus are possible, namely:

          Liquid and elastic fluid; elastic fluid; liquid.

      3. Complementarity

        This resides in association of pairs of the subclasses listed above, according to the characteristics under consideration in respect of kind of apparatus or working fluid.

        The subclasses concerned with the various principles, characteristics and complementarity are shown in the subsection index below.

It is seen from this index that:

 F01 - 
F04
Subsection index
MACHINES
positive displacement
rotary or oscillating piston
liquid and elastic fluid or elastic fluidF01C
liquid onlyF04C
reciprocating piston or other
liquid and elastic fluid or elastic fluidF01B
liquid onlyF04B
non-positive displacement
liquid and elastic fluid or elastic fluidF01D
liquid onlyF03B
ENGINES
positive displacement
rotary or oscillating piston
liquid and elastic fluid or elastic fluidF01C
liquid onlyF03C
reciprocating piston or other
liquid and elastic fluid or elastic fluidF01B
liquid onlyF03C
non-positive displacement
liquid and elastic fluid or elastic fluidF01D
liquid onlyF03B
PUMPS
positive displacement
rotary or oscillating pistonF04C
reciprocating piston or otherF04B
non-positive displacementF04D
 F02
COMBUSTION ENGINES (cyclically operating valves therefor, lubricating, exhausting, or silencing engines F01); HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
 F02P
IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES (specially adapted for rotary-piston or oscillating-piston engines F02B 53/00; ignition of combustion apparatus in general, glowing plugs F23Q; measuring of physical variables in general G01; controlling in general G05; data processing in general G06; electrical components in general, see section H; sparking plugs H01T)
 F02P
Subclass index
ELECTRIC SPARK IGNITION
Directly from generator; other installations 1/00; 3/00
Sparking plugs structurally combined with engine parts 13/00
Control: timing, distributing; other 5/00, 7/00; 9/00
Safety means 11/00
Other features 15/00
Testing 17/00
IGNITION OTHERWISE THAN BY ELECTRIC SPARK: BY INCANDESCENCE; BY DIRECT FLAME; BY OTHER MEANS 19/00; 21/00; 23/00
 F02P 1/00 - 
F02P 3/00
Electric spark ignition installations characterised by the type of ignition power generation or storage
P:30 F02P 1/00
Installations having electric ignition energy generated by magneto- or dynamo-electric generators without subsequent storage
P:40 F02P 3/00
Other electric spark ignition installations characterised by the type of ignition power generation storage
 F02P 3/02
·  having inductive energy storage, e.g. arrangements of induction coils
 F02P 5/00 - 
F02P 11/00
Advancing or retarding electric ignition spark; Arrangements of distributors or of circuit-makers or -breakers for electric spark ignition; Electric spark ignition control or safety means, not otherwise provided for
P:50 F02P 5/00
Advancing or retarding electric ignition spark; Control therefor  [6]
 F02P 5/04
·  automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions (dependent on position of personal controls of engine F02P 5/00)
 F02P 5/145
·  ·  using electrical means  [4]
 F02P 5/15
·  ·  ·  Digital data processing  [4]
 F02P 5/152
·  ·  ·  ·  dependent on pinking (detecting or indicating knocks in internal-combustion engines G01L 23/00)  [6]
 F02P 5/153
·  ·  ·  ·  dependent on combustion pressure  [6]
P:60 F02P 7/00
Arrangement of distributors, circuit-makers, circuit-breakers or pick-up devices for electric spark ignition (advancing or retarding ignition or control therefor F02P 5/00;  ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders F02P 15/00;   such devices per se, see the relevant classes of section H, e.g. rotary switches H01H 19/00, contact-breakers, distributors H01R 39/00, generators H02K)
P:70 F02P 9/00
Electric spark ignition control, not otherwise provided for
P:80 F02P 11/00
Safety means for electric spark ignition, not otherwise provided for
P:20 F02P 13/00
Sparking plugs structurally combined with other parts of internal-combustion engines (with fuel injectors F02M 57/00; predominant aspects of the parts, see the relevant subclasses)
P:90 F02P 15/00
Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P 1/00-F02P 13/00
P:0 F02P 17/00
Testing of ignition installations, e.g. in combination with adjusting (testing fuel injection apparatus F02M 65/00; testing ignition installations in general F23Q 23/00); Testing of ignition timing in compression-ignition engines  [4]
 F02P 17/12
·  Testing characteristics of the spark, ignition voltage or current (testing of sparking plugs G01M 19/02)  [6]
 F02P 19/00 - 
F02P 23/00
Other ignition
P:10 F02P 19/00
Incandescent ignition, e.g. during starting of internal-combustion engines; Combination of incandescent and spark ignition  [4]
P:100 F02P 21/00
Direct use of flames or burners for ignition
P:110 F02P 23/00
Other ignition